VMProtect/core/elf.h

693 lines
30 KiB
C
Raw Normal View History

2023-05-14 16:21:09 +03:00
/**
* ELF format.
*/
#ifndef ELF_H
#define ELF_H
enum {
EI_MAG0 = 0, // File identification index.
EI_MAG1 = 1, // File identification index.
EI_MAG2 = 2, // File identification index.
EI_MAG3 = 3, // File identification index.
EI_CLASS = 4, // File class.
EI_DATA = 5, // Data encoding.
EI_VERSION = 6, // File version.
EI_OSABI = 7, // OS/ABI identification.
EI_ABIVERSION = 8, // ABI version.
EI_PAD = 9, // Start of padding bytes.
EI_NIDENT = 16 // Number of bytes in e_ident.
};
struct Elf32_Ehdr {
uint8_t e_ident[EI_NIDENT]; // ELF Identification bytes
uint16_t e_type; // Type of file (see ET_* below)
uint16_t e_machine; // Required architecture for this file (see EM_*)
uint32_t e_version; // Must be equal to 1
uint32_t e_entry; // Address to jump to in order to start program
uint32_t e_phoff; // Program header table's file offset, in bytes
uint32_t e_shoff; // Section header table's file offset, in bytes
uint32_t e_flags; // Processor-specific flags
uint16_t e_ehsize; // Size of ELF header, in bytes
uint16_t e_phentsize; // Size of an entry in the program header table
uint16_t e_phnum; // Number of entries in the program header table
uint16_t e_shentsize; // Size of an entry in the section header table
uint16_t e_shnum; // Number of entries in the section header table
uint16_t e_shstrndx; // Sect hdr table index of sect name string table
};
struct Elf64_Ehdr {
uint8_t e_ident[EI_NIDENT];
uint16_t e_type;
uint16_t e_machine;
uint32_t e_version;
uint64_t e_entry;
uint64_t e_phoff;
uint64_t e_shoff;
uint32_t e_flags;
uint16_t e_ehsize;
uint16_t e_phentsize;
uint16_t e_phnum;
uint16_t e_shentsize;
uint16_t e_shnum;
uint16_t e_shstrndx;
};
enum {
ELFCLASSNONE = 0,
ELFCLASS32 = 1, // 32-bit object file
ELFCLASS64 = 2 // 64-bit object file
};
enum {
EV_NONE = 0,
EV_CURRENT = 1
};
enum {
ELFOSABI_NONE = 0, // UNIX System V ABI
ELFOSABI_SYSV = 0, // Alias
ELFOSABI_HPUX = 1, // HP-UX
ELFOSABI_NETBSD = 2, // NetBSD
ELFOSABI_GNU = 3, // Object uses GNU ELF extensions
ELFOSABI_LINUX = 3, // Compatibility alias
ELFOSABI_SOLARIS = 6, // Sun Solaris
ELFOSABI_AIX = 7, // IBM AIX
ELFOSABI_IRIX = 8, // SGI Irix
ELFOSABI_FREEBSD = 9, // FreeBSD
ELFOSABI_TRU64 = 10, // Compaq TRU64 UNIX
ELFOSABI_MODESTO = 11, // Novell Modesto
ELFOSABI_OPENBSD = 12, // OpenBSD
ELFOSABI_ARM_AEABI = 64, // ARM EABI
ELFOSABI_ARM = 97, // ARM
ELFOSABI_STANDALONE = 255 // Standalone (embedded) application
};
enum {
ET_NONE = 0, // No file type
ET_REL = 1, // Relocatable file
ET_EXEC = 2, // Executable file
ET_DYN = 3, // Shared object file
ET_CORE = 4, // Core file
ET_LOPROC = 0xff00, // Beginning of processor-specific codes
ET_HIPROC = 0xffff // Processor-specific
};
enum {
EM_NONE = 0, // No machine
EM_M32 = 1, // AT&T WE 32100
EM_SPARC = 2, // SPARC
EM_386 = 3, // Intel 386
EM_68K = 4, // Motorola 68000
EM_88K = 5, // Motorola 88000
EM_486 = 6, // Intel 486 (deprecated)
EM_860 = 7, // Intel 80860
EM_MIPS = 8, // MIPS R3000
EM_S370 = 9, // IBM System/370
EM_MIPS_RS3_LE = 10, // MIPS RS3000 Little-endian
EM_PARISC = 15, // Hewlett-Packard PA-RISC
EM_VPP500 = 17, // Fujitsu VPP500
EM_SPARC32PLUS = 18, // Enhanced instruction set SPARC
EM_960 = 19, // Intel 80960
EM_PPC = 20, // PowerPC
EM_PPC64 = 21, // PowerPC64
EM_S390 = 22, // IBM System/390
EM_SPU = 23, // IBM SPU/SPC
EM_V800 = 36, // NEC V800
EM_FR20 = 37, // Fujitsu FR20
EM_RH32 = 38, // TRW RH-32
EM_RCE = 39, // Motorola RCE
EM_ARM = 40, // ARM
EM_ALPHA = 41, // DEC Alpha
EM_SH = 42, // Hitachi SH
EM_SPARCV9 = 43, // SPARC V9
EM_TRICORE = 44, // Siemens TriCore
EM_ARC = 45, // Argonaut RISC Core
EM_H8_300 = 46, // Hitachi H8/300
EM_H8_300H = 47, // Hitachi H8/300H
EM_H8S = 48, // Hitachi H8S
EM_H8_500 = 49, // Hitachi H8/500
EM_IA_64 = 50, // Intel IA-64 processor architecture
EM_MIPS_X = 51, // Stanford MIPS-X
EM_COLDFIRE = 52, // Motorola ColdFire
EM_68HC12 = 53, // Motorola M68HC12
EM_MMA = 54, // Fujitsu MMA Multimedia Accelerator
EM_PCP = 55, // Siemens PCP
EM_NCPU = 56, // Sony nCPU embedded RISC processor
EM_NDR1 = 57, // Denso NDR1 microprocessor
EM_STARCORE = 58, // Motorola Star*Core processor
EM_ME16 = 59, // Toyota ME16 processor
EM_ST100 = 60, // STMicroelectronics ST100 processor
EM_TINYJ = 61, // Advanced Logic Corp. TinyJ embedded processor family
EM_X86_64 = 62, // AMD x86-64 architecture
EM_PDSP = 63, // Sony DSP Processor
EM_PDP10 = 64, // Digital Equipment Corp. PDP-10
EM_PDP11 = 65, // Digital Equipment Corp. PDP-11
EM_FX66 = 66, // Siemens FX66 microcontroller
EM_ST9PLUS = 67, // STMicroelectronics ST9+ 8/16 bit microcontroller
EM_ST7 = 68, // STMicroelectronics ST7 8-bit microcontroller
EM_68HC16 = 69, // Motorola MC68HC16 Microcontroller
EM_68HC11 = 70, // Motorola MC68HC11 Microcontroller
EM_68HC08 = 71, // Motorola MC68HC08 Microcontroller
EM_68HC05 = 72, // Motorola MC68HC05 Microcontroller
EM_SVX = 73, // Silicon Graphics SVx
EM_ST19 = 74, // STMicroelectronics ST19 8-bit microcontroller
EM_VAX = 75, // Digital VAX
EM_CRIS = 76, // Axis Communications 32-bit embedded processor
EM_JAVELIN = 77, // Infineon Technologies 32-bit embedded processor
EM_FIREPATH = 78, // Element 14 64-bit DSP Processor
EM_ZSP = 79, // LSI Logic 16-bit DSP Processor
EM_MMIX = 80, // Donald Knuth's educational 64-bit processor
EM_HUANY = 81, // Harvard University machine-independent object files
EM_PRISM = 82, // SiTera Prism
EM_AVR = 83, // Atmel AVR 8-bit microcontroller
EM_FR30 = 84, // Fujitsu FR30
EM_D10V = 85, // Mitsubishi D10V
EM_D30V = 86, // Mitsubishi D30V
EM_V850 = 87, // NEC v850
EM_M32R = 88, // Mitsubishi M32R
EM_MN10300 = 89, // Matsushita MN10300
EM_MN10200 = 90, // Matsushita MN10200
EM_PJ = 91, // picoJava
EM_OPENRISC = 92, // OpenRISC 32-bit embedded processor
EM_ARC_COMPACT = 93, // ARC International ARCompact processor (old
// spelling/synonym: EM_ARC_A5)
EM_XTENSA = 94, // Tensilica Xtensa Architecture
EM_VIDEOCORE = 95, // Alphamosaic VideoCore processor
EM_TMM_GPP = 96, // Thompson Multimedia General Purpose Processor
EM_NS32K = 97, // National Semiconductor 32000 series
EM_TPC = 98, // Tenor Network TPC processor
EM_SNP1K = 99, // Trebia SNP 1000 processor
EM_ST200 = 100, // STMicroelectronics (www.st.com) ST200
EM_IP2K = 101, // Ubicom IP2xxx microcontroller family
EM_MAX = 102, // MAX Processor
EM_CR = 103, // National Semiconductor CompactRISC microprocessor
EM_F2MC16 = 104, // Fujitsu F2MC16
EM_MSP430 = 105, // Texas Instruments embedded microcontroller msp430
EM_BLACKFIN = 106, // Analog Devices Blackfin (DSP) processor
EM_SE_C33 = 107, // S1C33 Family of Seiko Epson processors
EM_SEP = 108, // Sharp embedded microprocessor
EM_ARCA = 109, // Arca RISC Microprocessor
EM_UNICORE = 110, // Microprocessor series from PKU-Unity Ltd. and MPRC
// of Peking University
EM_EXCESS = 111, // eXcess: 16/32/64-bit configurable embedded CPU
EM_DXP = 112, // Icera Semiconductor Inc. Deep Execution Processor
EM_ALTERA_NIOS2 = 113, // Altera Nios II soft-core processor
EM_CRX = 114, // National Semiconductor CompactRISC CRX
EM_XGATE = 115, // Motorola XGATE embedded processor
EM_C166 = 116, // Infineon C16x/XC16x processor
EM_M16C = 117, // Renesas M16C series microprocessors
EM_DSPIC30F = 118, // Microchip Technology dsPIC30F Digital Signal
// Controller
EM_CE = 119, // Freescale Communication Engine RISC core
EM_M32C = 120, // Renesas M32C series microprocessors
EM_TSK3000 = 131, // Altium TSK3000 core
EM_RS08 = 132, // Freescale RS08 embedded processor
EM_SHARC = 133, // Analog Devices SHARC family of 32-bit DSP
// processors
EM_ECOG2 = 134, // Cyan Technology eCOG2 microprocessor
EM_SCORE7 = 135, // Sunplus S+core7 RISC processor
EM_DSP24 = 136, // New Japan Radio (NJR) 24-bit DSP Processor
EM_VIDEOCORE3 = 137, // Broadcom VideoCore III processor
EM_LATTICEMICO32 = 138, // RISC processor for Lattice FPGA architecture
EM_SE_C17 = 139, // Seiko Epson C17 family
EM_TI_C6000 = 140, // The Texas Instruments TMS320C6000 DSP family
EM_TI_C2000 = 141, // The Texas Instruments TMS320C2000 DSP family
EM_TI_C5500 = 142, // The Texas Instruments TMS320C55x DSP family
EM_MMDSP_PLUS = 160, // STMicroelectronics 64bit VLIW Data Signal Processor
EM_CYPRESS_M8C = 161, // Cypress M8C microprocessor
EM_R32C = 162, // Renesas R32C series microprocessors
EM_TRIMEDIA = 163, // NXP Semiconductors TriMedia architecture family
EM_HEXAGON = 164, // Qualcomm Hexagon processor
EM_8051 = 165, // Intel 8051 and variants
EM_STXP7X = 166, // STMicroelectronics STxP7x family of configurable
// and extensible RISC processors
EM_NDS32 = 167, // Andes Technology compact code size embedded RISC
// processor family
EM_ECOG1 = 168, // Cyan Technology eCOG1X family
EM_ECOG1X = 168, // Cyan Technology eCOG1X family
EM_MAXQ30 = 169, // Dallas Semiconductor MAXQ30 Core Micro-controllers
EM_XIMO16 = 170, // New Japan Radio (NJR) 16-bit DSP Processor
EM_MANIK = 171, // M2000 Reconfigurable RISC Microprocessor
EM_CRAYNV2 = 172, // Cray Inc. NV2 vector architecture
EM_RX = 173, // Renesas RX family
EM_METAG = 174, // Imagination Technologies META processor
// architecture
EM_MCST_ELBRUS = 175, // MCST Elbrus general purpose hardware architecture
EM_ECOG16 = 176, // Cyan Technology eCOG16 family
EM_CR16 = 177, // National Semiconductor CompactRISC CR16 16-bit
// microprocessor
EM_ETPU = 178, // Freescale Extended Time Processing Unit
EM_SLE9X = 179, // Infineon Technologies SLE9X core
EM_L10M = 180, // Intel L10M
EM_K10M = 181, // Intel K10M
EM_AARCH64 = 183, // ARM AArch64
EM_AVR32 = 185, // Atmel Corporation 32-bit microprocessor family
EM_STM8 = 186, // STMicroeletronics STM8 8-bit microcontroller
EM_TILE64 = 187, // Tilera TILE64 multicore architecture family
EM_TILEPRO = 188, // Tilera TILEPro multicore architecture family
EM_CUDA = 190, // NVIDIA CUDA architecture
EM_TILEGX = 191, // Tilera TILE-Gx multicore architecture family
EM_CLOUDSHIELD = 192, // CloudShield architecture family
EM_COREA_1ST = 193, // KIPO-KAIST Core-A 1st generation processor family
EM_COREA_2ND = 194, // KIPO-KAIST Core-A 2nd generation processor family
EM_ARC_COMPACT2 = 195, // Synopsys ARCompact V2
EM_OPEN8 = 196, // Open8 8-bit RISC soft processor core
EM_RL78 = 197, // Renesas RL78 family
EM_VIDEOCORE5 = 198, // Broadcom VideoCore V processor
EM_78KOR = 199, // Renesas 78KOR family
EM_56800EX = 200, // Freescale 56800EX Digital Signal Controller (DSC)
EM_BA1 = 201, // Beyond BA1 CPU architecture
EM_BA2 = 202, // Beyond BA2 CPU architecture
EM_XCORE = 203, // XMOS xCORE processor family
EM_MCHP_PIC = 204, // Microchip 8-bit PIC(r) family
EM_KM32 = 210, // KM211 KM32 32-bit processor
EM_KMX32 = 211, // KM211 KMX32 32-bit processor
EM_KMX16 = 212, // KM211 KMX16 16-bit processor
EM_KMX8 = 213, // KM211 KMX8 8-bit processor
EM_KVARC = 214, // KM211 KVARC processor
EM_CDP = 215, // Paneve CDP architecture family
EM_COGE = 216, // Cognitive Smart Memory Processor
EM_COOL = 217, // iCelero CoolEngine
EM_NORC = 218, // Nanoradio Optimized RISC
EM_CSR_KALIMBA = 219 // CSR Kalimba architecture family
};
/*
typedef uint64_t Elf64_Addr;
typedef uint64_t Elf64_Off;
typedef uint16_t Elf64_Half;
typedef uint32_t Elf64_Word;
typedef int32_t Elf64_Sword;
typedef uint64_t Elf64_Xword;
typedef int64_t Elf64_Sxword;
typedef int16_t Elf64_Section;
*/
struct Elf32_Phdr {
uint32_t p_type; // Type of segment
uint32_t p_offset; // File offset where segment is located, in bytes
uint32_t p_vaddr; // Virtual address of beginning of segment
uint32_t p_paddr; // Physical address of beginning of segment (OS-specific)
uint32_t p_filesz; // Num. of bytes in file image of segment (may be zero)
uint32_t p_memsz; // Num. of bytes in mem image of segment (may be zero)
uint32_t p_flags; // Segment flags
uint32_t p_align; // Segment alignment constraint
};
struct Elf64_Phdr {
uint32_t p_type; // Type of segment
uint32_t p_flags; // Segment flags
uint64_t p_offset; // File offset where segment is located, in bytes
uint64_t p_vaddr; // Virtual address of beginning of segment
uint64_t p_paddr; // Physical addr of beginning of segment (OS-specific)
uint64_t p_filesz; // Num. of bytes in file image of segment (may be zero)
uint64_t p_memsz; // Num. of bytes in mem image of segment (may be zero)
uint64_t p_align; // Segment alignment constraint
};
enum {
PT_NULL = 0, // Unused segment.
PT_LOAD = 1, // Loadable segment.
PT_DYNAMIC = 2, // Dynamic linking information.
PT_INTERP = 3, // Interpreter pathname.
PT_NOTE = 4, // Auxiliary information.
PT_SHLIB = 5, // Reserved.
PT_PHDR = 6, // The program header table itself.
PT_TLS = 7, // The thread-local storage template.
PT_LOOS = 0x60000000, // Lowest operating system-specific pt entry type.
PT_HIOS = 0x6fffffff, // Highest operating system-specific pt entry type.
PT_LOPROC = 0x70000000, // Lowest processor-specific program hdr entry type.
PT_HIPROC = 0x7fffffff, // Highest processor-specific program hdr entry type.
// x86-64 program header types.
// These all contain stack unwind tables.
PT_GNU_EH_FRAME = 0x6474e550,
PT_SUNW_EH_FRAME = 0x6474e550,
PT_SUNW_UNWIND = 0x6464e550,
PT_GNU_STACK = 0x6474e551, // Indicates stack executability.
PT_GNU_RELRO = 0x6474e552, // Read-only after relocation.
};
enum : unsigned {
PF_X = 1, // Execute
PF_W = 2, // Write
PF_R = 4, // Read
};
#define SHN_UNDEF 0
struct Elf32_Shdr {
uint32_t sh_name; // Section name (index into string table)
uint32_t sh_type; // Section type (SHT_*)
uint32_t sh_flags; // Section flags (SHF_*)
uint32_t sh_addr; // Address where section is to be loaded
uint32_t sh_offset; // File offset of section data, in bytes
uint32_t sh_size; // Size of section, in bytes
uint32_t sh_link; // Section type-specific header table index link
uint32_t sh_info; // Section type-specific extra information
uint32_t sh_addralign; // Section address alignment
uint32_t sh_entsize; // Size of records contained within the section
};
struct Elf64_Shdr {
uint32_t sh_name;
uint32_t sh_type;
uint64_t sh_flags;
uint64_t sh_addr;
uint64_t sh_offset;
uint64_t sh_size;
uint32_t sh_link;
uint32_t sh_info;
uint64_t sh_addralign;
uint64_t sh_entsize;
};
enum : unsigned {
SHT_NULL = 0, // No associated section (inactive entry).
SHT_PROGBITS = 1, // Program-defined contents.
SHT_SYMTAB = 2, // Symbol table.
SHT_STRTAB = 3, // String table.
SHT_RELA = 4, // Relocation entries; explicit addends.
SHT_HASH = 5, // Symbol hash table.
SHT_DYNAMIC = 6, // Information for dynamic linking.
SHT_NOTE = 7, // Information about the file.
SHT_NOBITS = 8, // Data occupies no space in the file.
SHT_REL = 9, // Relocation entries; no explicit addends.
SHT_SHLIB = 10, // Reserved.
SHT_DYNSYM = 11, // Symbol table.
SHT_INIT_ARRAY = 14, // Pointers to initialization functions.
SHT_FINI_ARRAY = 15, // Pointers to termination functions.
SHT_PREINIT_ARRAY = 16, // Pointers to pre-init functions.
SHT_GROUP = 17, // Section group.
SHT_SYMTAB_SHNDX = 18, // Indices for SHN_XINDEX entries.
SHT_LOOS = 0x60000000, // Lowest operating system-specific type.
SHT_GNU_ATTRIBUTES= 0x6ffffff5, // Object attributes.
SHT_GNU_HASH = 0x6ffffff6, // GNU-style hash table.
SHT_GNU_verdef = 0x6ffffffd, // GNU version definitions.
SHT_GNU_verneed = 0x6ffffffe, // GNU version references.
SHT_GNU_versym = 0x6fffffff, // GNU symbol versions table.
SHT_HIOS = 0x6fffffff, // Highest operating system-specific type.
SHT_LOPROC = 0x70000000, // Lowest processor arch-specific type.
SHT_ARM_EXIDX = 0x70000001U, // Exception Index table
SHT_ARM_PREEMPTMAP = 0x70000002U, // BPABI DLL dynamic linking pre-emption map
SHT_ARM_ATTRIBUTES = 0x70000003U, // Object file compatibility attributes
SHT_ARM_DEBUGOVERLAY = 0x70000004U,
SHT_ARM_OVERLAYSECTION = 0x70000005U,
SHT_HEX_ORDERED = 0x70000000, // Link editor is to sort the entries in this section based on their sizes
SHT_X86_64_UNWIND = 0x70000001, // Unwind information
SHT_MIPS_REGINFO = 0x70000006, // Register usage information
SHT_MIPS_OPTIONS = 0x7000000d, // General options
SHT_MIPS_ABIFLAGS = 0x7000002a, // ABI information.
SHT_HIPROC = 0x7fffffff, // Highest processor arch-specific type.
SHT_LOUSER = 0x80000000, // Lowest type reserved for applications.
SHT_HIUSER = 0xffffffff // Highest type reserved for applications.
};
enum : unsigned {
SHF_WRITE = 0x1, // Section data should be writable during execution.
SHF_ALLOC = 0x2, // Section occupies memory during program execution.
SHF_EXECINSTR = 0x4, // Section contains executable machine instructions.
SHF_MERGE = 0x10, // The data in this section may be merged.
SHF_STRINGS = 0x20, // The data in this section is null-terminated strings.
SHF_INFO_LINK = 0x40U, // A field in this section holds a section header table index.
SHF_LINK_ORDER = 0x80U, // Adds special ordering requirements for link editors.
SHF_OS_NONCONFORMING = 0x100U, // This section requires special OS-specific processing to avoid incorrect behavior.
SHF_GROUP = 0x200U, // This section is a member of a section group.
SHF_TLS = 0x400U, // This section holds Thread-Local Storage.
SHF_EXCLUDE = 0x80000000U, // This section is excluded from the final executable or shared library.
SHF_MASKOS = 0x0ff00000,
SHF_MASKPROC = 0xf0000000,
SHF_X86_64_LARGE = 0x10000000,
SHF_HEX_GPREL = 0x10000000,
SHF_MIPS_NODUPES = 0x01000000,
SHF_MIPS_NAMES = 0x02000000,
SHF_MIPS_LOCAL = 0x04000000, // Section data local to process.
SHF_MIPS_NOSTRIP = 0x08000000, // Do not strip this section.
SHF_MIPS_GPREL = 0x10000000, // Section must be part of global data area.
SHF_MIPS_MERGE = 0x20000000, // This section should be merged.
SHF_MIPS_ADDR = 0x40000000, // Address size to be inferred from section entry size.
SHF_MIPS_STRING = 0x80000000 // Section data is string data by default.
};
struct Elf32_Sym {
uint32_t st_name; // Symbol name (index into string table)
uint32_t st_value; // Value or address associated with the symbol
uint32_t st_size; // Size of the symbol
uint8_t st_info; // Symbol's type and binding attributes
uint8_t st_other; // Must be zero; reserved
uint16_t st_shndx; // Which section (header table index) it's defined in
};
struct Elf64_Sym {
uint32_t st_name; // Symbol name (index into string table)
uint8_t st_info; // Symbol's type and binding attributes
uint8_t st_other; // Must be zero; reserved
uint16_t st_shndx; // Which section (header tbl index) it's defined in
uint64_t st_value; // Value or address associated with the symbol
uint64_t st_size; // Size of the symbol
};
enum {
STT_NOTYPE = 0, // Symbol's type is not specified
STT_OBJECT = 1, // Symbol is a data object (variable, array, etc.)
STT_FUNC = 2, // Symbol is executable code (function, etc.)
STT_SECTION = 3, // Symbol refers to a section
STT_FILE = 4, // Local, absolute symbol that refers to a file
STT_COMMON = 5, // An uninitialized common block
STT_TLS = 6, // Thread local data object
STT_LOOS = 7, // Lowest operating system-specific symbol type
STT_HIOS = 8, // Highest operating system-specific symbol type
STT_GNU_IFUNC = 10, // GNU indirect function
STT_LOPROC = 13, // Lowest processor-specific symbol type
STT_HIPROC = 15 // Highest processor-specific symbol type
};
enum {
STB_LOCAL = 0, // Local symbol, not visible outside obj file containing def
STB_GLOBAL = 1, // Global symbol, visible to all object files being combined
STB_WEAK = 2, // Weak symbol, like global but lower-precedence
STB_GNU_UNIQUE = 10,
STB_LOOS = 10, // Lowest operating system-specific binding type
STB_HIOS = 12, // Highest operating system-specific binding type
STB_LOPROC = 13, // Lowest processor-specific binding type
STB_HIPROC = 15 // Highest processor-specific binding type
};
struct Elf32_Rel {
uint32_t r_offset; // Location (file byte offset, or program virtual addr)
uint32_t r_info; // Symbol table index and type of relocation to apply
};
struct Elf64_Rel {
uint64_t r_offset; // Location (file byte offset, or program virtual addr)
uint32_t r_type; // Type of relocation to apply
uint32_t r_ssym; // Symbol table index
};
struct Elf32_Rela {
uint32_t r_offset; // Location (file byte offset, or program virtual addr)
uint32_t r_info; // Symbol table index and type of relocation to apply
uint32_t r_addend;
};
struct Elf64_Rela {
uint64_t r_offset; // Location (file byte offset, or program virtual addr)
uint32_t r_type; // Type of relocation to apply
uint32_t r_ssym; // Symbol table index
uint64_t r_addend;
};
struct Elf32_Dyn {
uint32_t d_tag; // Type of dynamic table entry.
union
{
uint32_t d_val; // Integer value of entry.
uint32_t d_ptr; // Pointer value of entry.
} d_un;
};
struct Elf64_Dyn {
uint64_t d_tag; // Type of dynamic table entry.
union
{
uint64_t d_val; // Integer value of entry.
uint64_t d_ptr; // Pointer value of entry.
} d_un;
};
enum {
DT_NULL = 0, // Marks end of dynamic array.
DT_NEEDED = 1, // String table offset of needed library.
DT_PLTRELSZ = 2, // Size of relocation entries in PLT.
DT_PLTGOT = 3, // Address associated with linkage table.
DT_HASH = 4, // Address of symbolic hash table.
DT_STRTAB = 5, // Address of dynamic string table.
DT_SYMTAB = 6, // Address of dynamic symbol table.
DT_RELA = 7, // Address of relocation table (Rela entries).
DT_RELASZ = 8, // Size of Rela relocation table.
DT_RELAENT = 9, // Size of a Rela relocation entry.
DT_STRSZ = 10, // Total size of the string table.
DT_SYMENT = 11, // Size of a symbol table entry.
DT_INIT = 12, // Address of initialization function.
DT_FINI = 13, // Address of termination function.
DT_SONAME = 14, // String table offset of a shared objects name.
DT_RPATH = 15, // String table offset of library search path.
DT_SYMBOLIC = 16, // Changes symbol resolution algorithm.
DT_REL = 17, // Address of relocation table (Rel entries).
DT_RELSZ = 18, // Size of Rel relocation table.
DT_RELENT = 19, // Size of a Rel relocation entry.
DT_PLTREL = 20, // Type of relocation entry used for linking.
DT_DEBUG = 21, // Reserved for debugger.
DT_TEXTREL = 22, // Relocations exist for non-writable segments.
DT_JMPREL = 23, // Address of relocations associated with PLT.
DT_BIND_NOW = 24, // Process all relocations before execution.
DT_INIT_ARRAY = 25, // Pointer to array of initialization functions.
DT_FINI_ARRAY = 26, // Pointer to array of termination functions.
DT_INIT_ARRAYSZ = 27, // Size of DT_INIT_ARRAY.
DT_FINI_ARRAYSZ = 28, // Size of DT_FINI_ARRAY.
DT_RUNPATH = 29, // String table offset of lib search path.
DT_FLAGS = 30, // Flags.
DT_ENCODING = 32, // Values from here to DT_LOOS follow the rules for the interpretation of the d_un union.
DT_PREINIT_ARRAY = 32, // Pointer to array of preinit functions.
DT_PREINIT_ARRAYSZ = 33, // Size of the DT_PREINIT_ARRAY array.
DT_LOOS = 0x60000000, // Start of environment specific tags.
DT_HIOS = 0x6FFFFFFF, // End of environment specific tags.
DT_LOPROC = 0x70000000, // Start of processor specific tags.
DT_HIPROC = 0x7FFFFFFF, // End of processor specific tags.
DT_GNU_HASH = 0x6FFFFEF5, // Reference to the GNU hash table.
DT_RELACOUNT = 0x6FFFFFF9, // ELF32_Rela count.
DT_RELCOUNT = 0x6FFFFFFA, // ELF32_Rel count.
DT_FLAGS_1 = 0X6FFFFFFB, // Flags_1.
DT_VERSYM = 0x6FFFFFF0, // The address of .gnu.version section.
DT_VERDEF = 0X6FFFFFFC, // The address of the version definition table.
DT_VERDEFNUM = 0X6FFFFFFD, // The number of entries in DT_VERDEF.
DT_VERNEED = 0X6FFFFFFE, // The address of the version Dependency table.
DT_VERNEEDNUM = 0X6FFFFFFF, // The number of entries in DT_VERNEED.
};
/* Version definition sections. */
struct Elf32_Verdef
{
uint16_t vd_version; /* Version revision */
uint16_t vd_flags; /* Version information */
uint16_t vd_ndx; /* Version Index */
uint16_t vd_cnt; /* Number of associated aux entries */
uint32_t vd_hash; /* Version name hash value */
uint32_t vd_aux; /* Offset in bytes to verdaux array */
uint32_t vd_next; /* Offset in bytes to next verdef entry */
};
struct Elf64_Verdef
{
uint16_t vd_version; /* Version revision */
uint16_t vd_flags; /* Version information */
uint16_t vd_ndx; /* Version Index */
uint16_t vd_cnt; /* Number of associated aux entries */
uint32_t vd_hash; /* Version name hash value */
uint32_t vd_aux; /* Offset in bytes to verdaux array */
uint32_t vd_next; /* Offset in bytes to next verdef entry */
};
/* Legal values for vd_version (version revision). */
#define VER_DEF_NONE 0 /* No version */
#define VER_DEF_CURRENT 1 /* Current version */
#define VER_DEF_NUM 2 /* Given version number */
/* Legal values for vd_flags (version information flags). */
#define VER_FLG_BASE 0x1 /* Version definition of file itself */
#define VER_FLG_WEAK 0x2 /* Weak version identifier */
/* Versym symbol index values. */
#define VER_NDX_LOCAL 0 /* Symbol is local. */
#define VER_NDX_GLOBAL 1 /* Symbol is global. */
#define VER_NDX_LORESERVE 0xff00 /* Beginning of reserved entries. */
#define VER_NDX_ELIMINATE 0xff01 /* Symbol is to be eliminated. */
/* Auxialiary version information. */
struct Elf32_Verdaux
{
uint32_t vda_name; /* Version or dependency names */
uint32_t vda_next; /* Offset in bytes to next verdaux entry */
};
struct Elf64_Verdaux
{
uint32_t vda_name; /* Version or dependency names */
uint32_t vda_next; /* Offset in bytes to next verdaux entry */
};
/* Version dependency section. */
struct Elf32_Verneed
{
uint16_t vn_version; /* Version of structure */
uint16_t vn_cnt; /* Number of associated aux entries */
uint32_t vn_file; /* Offset of filename for this dependency */
uint32_t vn_aux; /* Offset in bytes to vernaux array */
uint32_t vn_next; /* Offset in bytes to next verneed entry */
};
struct Elf64_Verneed
{
uint16_t vn_version; /* Version of structure */
uint16_t vn_cnt; /* Number of associated aux entries */
uint32_t vn_file; /* Offset of filename for this dependency */
uint32_t vn_aux; /* Offset in bytes to vernaux array */
uint32_t vn_next; /* Offset in bytes to next verneed entry */
};
/* Legal values for vn_version (version revision). */
#define VER_NEED_NONE 0 /* No version */
#define VER_NEED_CURRENT 1 /* Current version */
#define VER_NEED_NUM 2 /* Given version number */
/* Auxiliary needed version information. */
struct Elf32_Vernaux
{
uint32_t vna_hash; /* Hash value of dependency name */
uint16_t vna_flags; /* Dependency specific information */
uint16_t vna_other; /* Unused */
uint32_t vna_name; /* Dependency name string offset */
uint32_t vna_next; /* Offset in bytes to next vernaux entry */
};
struct Elf64_Vernaux
{
uint32_t vna_hash; /* Hash value of dependency name */
uint16_t vna_flags; /* Dependency specific information */
uint16_t vna_other; /* Unused */
uint32_t vna_name; /* Dependency name string offset */
uint32_t vna_next; /* Offset in bytes to next vernaux entry */
};
#define R_386_NONE 0 /* relocation type */
#define R_386_32 1
#define R_386_PC32 2
#define R_386_GOT32 3
#define R_386_PLT32 4
#define R_386_COPY 5
#define R_386_GLOB_DAT 6
#define R_386_JMP_SLOT 7
#define R_386_RELATIVE 8
#define R_386_GOTOFF 9
#define R_386_GOTPC 10
#define R_386_IRELATIVE 42
#define R_X86_64_IRELATIVE 37
#define ELF_PAGE_SIZE 0x1000
#ifndef PROT_NONE
#define PROT_NONE 0x0 /* Page can not be accessed. */
#define PROT_READ 0x1 /* Page can be read. */
#define PROT_WRITE 0x2 /* Page can be written. */
#define PROT_EXEC 0x4 /* Page can be executed. */
#endif
#endif