VMProtect/runtime/VMProtect.Runtime/Numerics/BigIntegerBuilder.cs

1530 lines
35 KiB
C#
Raw Normal View History

2023-05-14 16:21:09 +03:00
// ==++==
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
// ==--==
using System;
using Contracts = System.Diagnostics.Debug;
using Contract = System.Diagnostics.Debug;
using Conditional = System.Diagnostics.ConditionalAttribute;
// ReSharper disable once CheckNamespace
namespace Numerics
{
/// <summary>
/// BigIntegerBuilder holds a multiprecision unsigned integer value. It is mutable and
/// supports common arithmetic operations. Be careful NOT to simply assign one
/// BigIntegerBuilder to another, unless you really know what you are doing. The proper
/// way to replicate a BigIntegerBuilder is via the constructor "BigIntegerBuilder(ref BigIntegerBuilder reg)",
/// or with reg1.Load(ref reg2). Using the ctor marks the buffer as shared so changing the
/// value of one register will not affect the other. Using Load copies the contents from
/// one to the other. Either way, the internal buffer isn't aliased incorrectly.
/// </summary>
internal struct BigIntegerBuilder
{
// ReSharper disable once InconsistentNaming
private const int kcbitUint = 32;
// For a single uint, _iuLast is 0.
private int _iuLast;
// Used if _iuLast == 0.
private uint _uSmall;
// Used if _iuLast > 0.
private uint[] _rgu;
// This is false whenever _rgu is null or is shared with a NewBigInteger
// or with another BigIntegerBuilder.
private bool _fWritable;
[Conditional("DEBUG")]
// ReSharper disable once UnusedParameter.Local
private void AssertValid(bool fTrimmed)
{
if (_iuLast <= 0)
{
Contract.Assert(_iuLast == 0);
Contract.Assert(!_fWritable || _rgu != null);
}
else
{
Contract.Assert(_rgu != null && _rgu.Length > _iuLast);
Contract.Assert(!fTrimmed || _rgu[_iuLast] != 0);
}
}
#if CONTRACTS_FULL
[ContractInvariantMethod]
private void ObjectInvariant()
{
Contract.Invariant(_iuLast >=0);
Contract.Invariant(!(_iuLast == 0) || (!_fWritable || _rgu != null));
Contract.Invariant(!(_iuLast > 0) || (_rgu != null && _rgu.Length > _iuLast));
}
#endif
/*
internal BigIntegerBuilder(ref BigIntegerBuilder reg)
{
reg.AssertValid(true);
this = reg;
if (_fWritable)
{
_fWritable = false;
if (_iuLast == 0)
_rgu = null;
else
reg._fWritable = false;
}
AssertValid(true);
}
*/
internal BigIntegerBuilder(int cuAlloc)
{
_iuLast = 0;
_uSmall = 0;
if (cuAlloc > 1)
{
_rgu = new uint[cuAlloc];
_fWritable = true;
}
else
{
_rgu = null;
_fWritable = false;
}
AssertValid(true);
}
/*
internal BigIntegerBuilder(BigInteger bn)
{
_fWritable = false;
_rgu = bn._Bits;
if (_rgu == null)
{
_iuLast = 0;
_uSmall = NumericsHelpers.Abs(bn._Sign);
}
else
{
_iuLast = _rgu.Length - 1;
_uSmall = _rgu[0];
while (_iuLast > 0 && _rgu[_iuLast] == 0)
--_iuLast;
}
AssertValid(true);
}
*/
internal BigIntegerBuilder(BigInteger bn, ref int sign)
{
Contract.Assert(sign == +1 || sign == -1);
_fWritable = false;
_rgu = bn._Bits;
int n = bn._Sign;
int mask = n >> (kcbitUint - 1);
sign = (sign ^ mask) - mask;
if (_rgu == null)
{
_iuLast = 0;
_uSmall = (uint)((n ^ mask) - mask);
}
else
{
_iuLast = _rgu.Length - 1;
_uSmall = _rgu[0];
while (_iuLast > 0 && _rgu[_iuLast] == 0)
--_iuLast;
}
AssertValid(true);
}
internal BigInteger GetInteger(int sign)
{
Contract.Assert(sign == +1 || sign == -1);
AssertValid(true);
uint[] bits;
GetIntegerParts(sign, out sign, out bits);
return new BigInteger(sign, bits);
}
private void GetIntegerParts(int signSrc, out int sign, out uint[] bits)
{
Contract.Assert(signSrc == +1 || signSrc == -1);
AssertValid(true);
if (_iuLast == 0)
{
if (_uSmall <= int.MaxValue)
{
sign = signSrc * (int)_uSmall;
bits = null;
return;
}
if (_rgu == null)
_rgu = new[] { _uSmall };
else if (_fWritable)
_rgu[0] = _uSmall;
else if (_rgu[0] != _uSmall)
_rgu = new[] { _uSmall };
}
// The sign is +/- 1.
sign = signSrc;
int cuExtra = _rgu.Length - _iuLast - 1;
Contract.Assert(cuExtra >= 0);
if (cuExtra <= 1)
{
if (cuExtra == 0 || _rgu[_iuLast + 1] == 0)
{
_fWritable = false;
bits = _rgu;
return;
}
if (_fWritable)
{
_rgu[_iuLast + 1] = 0;
_fWritable = false;
bits = _rgu;
return;
}
// The buffer isn't writable, but has an extra uint that is non-zero,
// so we have to allocate a new buffer.
}
// Keep the bigger buffer (if it is writable), but create a smaller one for the BigInteger.
bits = _rgu;
Array.Resize(ref bits, _iuLast + 1);
if (!_fWritable)
_rgu = bits;
}
private void Set(uint u)
{
_uSmall = u;
_iuLast = 0;
AssertValid(true);
}
private void Set(ulong uu)
{
uint uHi = NumericsHelpers.GetHi(uu);
if (uHi == 0)
{
_uSmall = NumericsHelpers.GetLo(uu);
_iuLast = 0;
}
else
{
SetSizeLazy(2);
_rgu[0] = (uint) uu;
_rgu[1] = uHi;
}
}
internal int Size { get { return _iuLast + 1; } }
//internal uint High { get { return _iuLast == 0 ? _uSmall : _rgu[_iuLast]; } }
/*internal void GetApproxParts(out int exp, out ulong man)
{
AssertValid(true);
if (_iuLast == 0)
{
man = _uSmall;
exp = 0;
return;
}
int cuLeft = _iuLast - 1;
man = NumericsHelpers.MakeUlong(_rgu[cuLeft + 1], _rgu[cuLeft]);
exp = cuLeft * kcbitUint;
int cbit;
if (cuLeft > 0 && (cbit = NumericsHelpers.CbitHighZero(_rgu[cuLeft + 1])) > 0)
{
// Get 64 bits.
Contract.Assert(cbit < kcbitUint);
man = (man << cbit) | (_rgu[cuLeft - 1] >> (kcbitUint - cbit));
exp -= cbit;
}
}*/
private void Trim()
{
AssertValid(false);
if (_iuLast > 0 && _rgu[_iuLast] == 0)
{
_uSmall = _rgu[0];
while (--_iuLast > 0 && _rgu[_iuLast] == 0)
{
}
}
AssertValid(true);
}
private int CuNonZero
{
get
{
Contract.Assert(_iuLast > 0);
int cu = 0;
for (int iu = _iuLast; iu >= 0; --iu)
{
if (_rgu[iu] != 0)
cu++;
}
return cu;
}
}
// Sets the size to cu and makes sure the buffer is writable (if cu > 1),
// but makes no guarantees about the contents of the buffer.
private void SetSizeLazy(int cu)
{
Contract.Assert(cu > 0);
AssertValid(false);
if (cu <= 1)
{
_iuLast = 0;
return;
}
if (!_fWritable || _rgu.Length < cu)
{
_rgu = new uint[cu];
_fWritable = true;
}
_iuLast = cu - 1;
AssertValid(false);
}
// Sets the size to cu, makes sure the buffer is writable (if cu > 1),
// and set the contents to all zero.
private void SetSizeClear(int cu)
{
Contract.Assert(cu > 0);
AssertValid(false);
if (cu <= 1)
{
_iuLast = 0;
_uSmall = 0;
return;
}
if (!_fWritable || _rgu.Length < cu)
{
_rgu = new uint[cu];
_fWritable = true;
}
else
Array.Clear(_rgu, 0, cu);
_iuLast = cu - 1;
AssertValid(false);
}
// Sets the size to cu, makes sure the buffer is writable (if cu > 1),
// and maintains the contents. If the buffer is reallocated, cuExtra
// uints are also allocated.
private void SetSizeKeep(int cu, int cuExtra)
{
Contract.Assert(cu > 0 && cuExtra >= 0);
AssertValid(false);
if (cu <= 1)
{
if (_iuLast > 0)
_uSmall = _rgu[0];
_iuLast = 0;
return;
}
if (!_fWritable || _rgu.Length < cu)
{
uint[] rgu = new uint[cu + cuExtra];
if (_iuLast == 0)
rgu[0] = _uSmall;
else
Array.Copy(_rgu, rgu, Math.Min(cu, _iuLast + 1));
_rgu = rgu;
_fWritable = true;
}
else if (_iuLast + 1 < cu)
{
Array.Clear(_rgu, _iuLast + 1, cu - _iuLast - 1);
if (_iuLast == 0)
_rgu[0] = _uSmall;
}
_iuLast = cu - 1;
AssertValid(false);
}
// Makes sure the buffer is writable and can support cu uints.
// Preserves the contents of the buffer up to min(_iuLast + 1, cu).
// Changes the size if cu <= _iuLast and the buffer needs to be allocated.
/*
internal void EnsureWritable(int cu, int cuExtra)
{
Contract.Assert(cu > 1 && cuExtra >= 0);
AssertValid(false);
if (_fWritable && _rgu.Length >= cu)
return;
uint[] rgu = new uint[cu + cuExtra];
if (_iuLast > 0)
{
if (_iuLast >= cu)
_iuLast = cu - 1;
Array.Copy(_rgu, rgu, _iuLast + 1);
}
_rgu = rgu;
_fWritable = true;
AssertValid(false);
}
*/
// Makes sure the buffer is writable and can support _iuLast + 1 uints.
// Preserves the contents of the buffer.
private void EnsureWritable(int cuExtra = 0)
{
Contract.Assert(cuExtra >= 0);
AssertValid(false);
Contract.Assert(_iuLast > 0);
if (_fWritable)
return;
uint[] rgu = new uint[_iuLast + 1 + cuExtra];
Array.Copy(_rgu, rgu, _iuLast + 1);
_rgu = rgu;
_fWritable = true;
AssertValid(false);
}
// Loads the value of reg into this register.
/*internal void Load(ref BigIntegerBuilder reg)
{
Load(ref reg, 0);
}*/
// Loads the value of reg into this register. If we need to allocate memory
// to perform the load, allocate cuExtra elements.
private void Load(ref BigIntegerBuilder reg, int cuExtra)
{
Contract.Assert(cuExtra >= 0);
AssertValid(false);
reg.AssertValid(true);
if (reg._iuLast == 0)
{
_uSmall = reg._uSmall;
_iuLast = 0;
}
else
{
if (!_fWritable || _rgu.Length <= reg._iuLast)
{
_rgu = new uint[reg._iuLast + 1 + cuExtra];
_fWritable = true;
}
_iuLast = reg._iuLast;
Array.Copy(reg._rgu, _rgu, _iuLast + 1);
}
AssertValid(true);
}
/*internal void Add(uint u)
{
AssertValid(true);
if (_iuLast == 0)
{
if ((_uSmall += u) >= u)
return;
SetSizeLazy(2);
_rgu[0] = _uSmall;
_rgu[1] = 1;
return;
}
if (u == 0)
return;
uint uNew = _rgu[0] + u;
if (uNew < u)
{
// Have carry.
EnsureWritable(1);
ApplyCarry(1);
}
else if (!_fWritable)
EnsureWritable();
_rgu[0] = uNew;
AssertValid(true);
}
internal void Add(ref BigIntegerBuilder reg)
{
AssertValid(true);
reg.AssertValid(true);
if (reg._iuLast == 0)
{
Add(reg._uSmall);
return;
}
if (_iuLast == 0)
{
uint u = _uSmall;
if (u == 0)
this = new BigIntegerBuilder(ref reg);
else
{
Load(ref reg, 1);
Add(u);
}
return;
}
EnsureWritable(Math.Max(_iuLast, reg._iuLast) + 1, 1);
int cuAdd = reg._iuLast + 1;
if (_iuLast < reg._iuLast)
{
cuAdd = _iuLast + 1;
Array.Copy(reg._rgu, _iuLast + 1, _rgu, _iuLast + 1, reg._iuLast - _iuLast);
Contract.Assert(_iuLast > 0);
_iuLast = reg._iuLast;
}
// Add, tracking carry.
uint uCarry = 0;
for (int iu = 0; iu < cuAdd; iu++)
{
uCarry = AddCarry(ref _rgu[iu], reg._rgu[iu], uCarry);
Contract.Assert(uCarry <= 1);
}
// Deal with extra carry.
if (uCarry != 0)
ApplyCarry(cuAdd);
AssertValid(true);
}
internal void Sub(ref int sign, uint u)
{
Contract.Assert(sign == +1 || sign == -1);
AssertValid(true);
if (_iuLast == 0)
{
if (u <= _uSmall)
_uSmall -= u;
else
{
_uSmall = u - _uSmall;
sign = -sign;
}
AssertValid(true);
return;
}
if (u == 0)
return;
EnsureWritable();
uint uTmp = _rgu[0];
_rgu[0] = uTmp - u;
if (uTmp < u)
{
ApplyBorrow(1);
Trim();
}
AssertValid(true);
}
internal void Sub(ref int sign, ref BigIntegerBuilder reg)
{
Contract.Assert(sign == +1 || sign == -1);
AssertValid(true);
reg.AssertValid(true);
if (reg._iuLast == 0)
{
Sub(ref sign, reg._uSmall);
return;
}
if (_iuLast == 0)
{
uint u = _uSmall;
if (u == 0)
this = new BigIntegerBuilder(ref reg);
else
{
Load(ref reg);
Sub(ref sign, u);
}
sign = -sign;
return;
}
if (_iuLast < reg._iuLast)
{
SubRev(ref reg);
sign = -sign;
return;
}
int cuSub = reg._iuLast + 1;
if (_iuLast == reg._iuLast)
{
// Determine which is larger.
_iuLast = BigInteger.GetDiffLength(_rgu, reg._rgu, _iuLast + 1) - 1;
if (_iuLast < 0)
{
_iuLast = 0;
_uSmall = 0;
return;
}
uint u1 = _rgu[_iuLast];
uint u2 = reg._rgu[_iuLast];
if (_iuLast == 0)
{
if (u1 < u2)
{
_uSmall = u2 - u1;
sign = -sign;
}
else
_uSmall = u1 - u2;
AssertValid(true);
return;
}
if (u1 < u2)
{
Contract.Assert(_iuLast > 0);
reg._iuLast = _iuLast;
SubRev(ref reg);
reg._iuLast = cuSub - 1;
Contract.Assert(reg._iuLast > 0);
sign = -sign;
return;
}
cuSub = _iuLast + 1;
}
EnsureWritable();
// Subtract, tracking borrow.
uint uBorrow = 0;
for (int iu = 0; iu < cuSub; iu++)
{
uBorrow = SubBorrow(ref _rgu[iu], reg._rgu[iu], uBorrow);
Contract.Assert(uBorrow <= 1);
}
if (uBorrow != 0)
{
Contract.Assert(uBorrow == 1 && cuSub <= _iuLast);
ApplyBorrow(cuSub);
}
Trim();
}
// Subtract this register from the given one and put the result in this one.
// Asserts that reg is larger in the most significant uint.
private void SubRev(ref BigIntegerBuilder reg)
{
Contract.Assert(0 < _iuLast && _iuLast <= reg._iuLast);
Contract.Assert(_iuLast < reg._iuLast || _rgu[_iuLast] < reg._rgu[_iuLast]);
EnsureWritable(reg._iuLast + 1, 0);
int cuSub = _iuLast + 1;
if (_iuLast < reg._iuLast)
{
Array.Copy(reg._rgu, _iuLast + 1, _rgu, _iuLast + 1, reg._iuLast - _iuLast);
Contract.Assert(_iuLast > 0);
_iuLast = reg._iuLast;
}
uint uBorrow = 0;
for (int iu = 0; iu < cuSub; iu++)
{
uBorrow = SubRevBorrow(ref _rgu[iu], reg._rgu[iu], uBorrow);
Contract.Assert(uBorrow <= 1);
}
if (uBorrow != 0)
{
Contract.Assert(uBorrow == 1);
ApplyBorrow(cuSub);
}
Trim();
}*/
private void Mul(uint u)
{
if (u == 0)
{
Set(0);
return;
}
if (u == 1)
return;
if (_iuLast == 0)
{
Set((ulong)_uSmall * u);
return;
}
EnsureWritable(1);
uint uCarry = 0;
for (int iu = 0; iu <= _iuLast; iu++)
uCarry = MulCarry(ref _rgu[iu], u, uCarry);
if (uCarry != 0)
{
SetSizeKeep(_iuLast + 2, 0);
_rgu[_iuLast] = uCarry;
}
}
// This version may share memory with regMul.
/*internal void Mul(ref BigIntegerBuilder regMul)
{
AssertValid(true);
regMul.AssertValid(true);
if (regMul._iuLast == 0)
Mul(regMul._uSmall);
else if (_iuLast == 0)
{
uint u = _uSmall;
if (u == 1)
this = new BigIntegerBuilder(ref regMul);
else if (u != 0)
{
Load(ref regMul, 1);
Mul(u);
}
}
else
{
int cuBase = _iuLast + 1;
SetSizeKeep(cuBase + regMul._iuLast, 1);
for (int iu = cuBase; --iu >= 0; )
{
uint uMul = _rgu[iu];
_rgu[iu] = 0;
uint uCarry = 0;
for (int iuSrc = 0; iuSrc <= regMul._iuLast; iuSrc++)
uCarry = AddMulCarry(ref _rgu[iu + iuSrc], regMul._rgu[iuSrc], uMul, uCarry);
if (uCarry != 0)
{
for (int iuDst = iu + regMul._iuLast + 1; uCarry != 0 && iuDst <= _iuLast; iuDst++)
uCarry = AddCarry(ref _rgu[iuDst], 0, uCarry);
if (uCarry != 0)
{
SetSizeKeep(_iuLast + 2, 0);
_rgu[_iuLast] = uCarry;
}
}
}
AssertValid(true);
}
}*/
// Multiply reg1 times reg2, putting the result in 'this'. This version never shares memory
// with either of the operands. This is useful when performing a series of arithmetic operations
// and large working buffers are allocated up front.
internal void Mul(ref BigIntegerBuilder reg1, ref BigIntegerBuilder reg2)
{
AssertValid(true);
reg1.AssertValid(true);
reg2.AssertValid(true);
if (reg1._iuLast == 0)
{
if (reg2._iuLast == 0)
Set((ulong)reg1._uSmall * reg2._uSmall);
else
{
Load(ref reg2, 1);
Mul(reg1._uSmall);
}
}
else if (reg2._iuLast == 0)
{
Load(ref reg1, 1);
Mul(reg2._uSmall);
}
else
{
Contract.Assert(reg1._iuLast > 0 && reg2._iuLast > 0);
SetSizeClear(reg1._iuLast + reg2._iuLast + 2);
uint[] rgu1, rgu2;
int cu1, cu2;
// We prefer more iterations on the inner loop and fewer on the outer.
if (reg1.CuNonZero <= reg2.CuNonZero)
{
rgu1 = reg1._rgu; cu1 = reg1._iuLast + 1;
rgu2 = reg2._rgu; cu2 = reg2._iuLast + 1;
}
else
{
rgu1 = reg2._rgu; cu1 = reg2._iuLast + 1;
rgu2 = reg1._rgu; cu2 = reg1._iuLast + 1;
}
for (int iu1 = 0; iu1 < cu1; iu1++)
{
uint uCur = rgu1[iu1];
if (uCur == 0)
continue;
uint uCarry = 0;
int iuRes = iu1;
for (int iu2 = 0; iu2 < cu2; iu2++, iuRes++)
uCarry = AddMulCarry(ref _rgu[iuRes], uCur, rgu2[iu2], uCarry);
while (uCarry != 0)
uCarry = AddCarry(ref _rgu[iuRes++], 0, uCarry);
}
Trim();
}
}
// Divide 'this' by uDen, leaving the quotient in 'this' and returning the remainder.
/*internal uint DivMod(uint uDen)
{
AssertValid(true);
if (uDen == 1)
return 0;
if (_iuLast == 0)
{
uint uTmp = _uSmall;
_uSmall = uTmp / uDen;
return uTmp % uDen;
}
EnsureWritable();
ulong uu = 0;
for (int iv = _iuLast; iv >= 0; iv--)
{
uu = NumericsHelpers.MakeUlong((uint)uu, _rgu[iv]);
_rgu[iv] = (uint)(uu / uDen);
uu %= uDen;
}
Trim();
return (uint)uu;
}*/
// Divide regNum by uDen, returning the remainder and tossing the quotient.
private static uint Mod(ref BigIntegerBuilder regNum, uint uDen)
{
regNum.AssertValid(true);
if (uDen == 1)
return 0;
if (regNum._iuLast == 0)
return regNum._uSmall % uDen;
ulong uu = 0;
for (int iv = regNum._iuLast; iv >= 0; iv--)
{
uu = NumericsHelpers.MakeUlong((uint)uu, regNum._rgu[iv]);
uu %= uDen;
}
return (uint)uu;
}
// Divide 'this' by regDen, leaving the remainder in 'this' and tossing the quotient.
internal void Mod(ref BigIntegerBuilder regDen)
{
AssertValid(true);
regDen.AssertValid(true);
if (regDen._iuLast == 0)
{
Set(Mod(ref this, regDen._uSmall));
return;
}
if (_iuLast == 0)
return;
BigIntegerBuilder regTmp = new BigIntegerBuilder();
ModDivCore(ref this, ref regDen, false, ref regTmp);
}
// Divide 'this' by regDen, leaving the quotient in 'this' and tossing the remainder.
/*internal void Div(ref BigIntegerBuilder regDen)
{
AssertValid(true);
regDen.AssertValid(true);
if (regDen._iuLast == 0)
{
DivMod(regDen._uSmall);
return;
}
if (_iuLast == 0)
{
_uSmall = 0;
return;
}
BigIntegerBuilder regTmp = new BigIntegerBuilder();
ModDivCore(ref this, ref regDen, true, ref regTmp);
NumericsHelpers.Swap(ref this, ref regTmp);
}*/
// Divide regNum by regDen, leaving the remainder in regNum and the quotient in regQuo (if fQuo is true).
/*
internal void ModDiv(ref BigIntegerBuilder regDen, ref BigIntegerBuilder regQuo)
{
if (regDen._iuLast == 0)
{
regQuo.Set(DivMod(regDen._uSmall));
NumericsHelpers.Swap(ref this, ref regQuo);
return;
}
if (_iuLast == 0)
return;
ModDivCore(ref this, ref regDen, true, ref regQuo);
}
*/
private static void ModDivCore(ref BigIntegerBuilder regNum, ref BigIntegerBuilder regDen, bool fQuo, ref BigIntegerBuilder regQuo)
{
Contract.Assert(regNum._iuLast > 0 && regDen._iuLast > 0);
regQuo.Set(0);
if (regNum._iuLast < regDen._iuLast)
return;
Contract.Assert(0 < regDen._iuLast && regDen._iuLast <= regNum._iuLast);
int cuDen = regDen._iuLast + 1;
int cuDiff = regNum._iuLast - regDen._iuLast;
// Determine whether the result will have cuDiff "digits" or cuDiff+1 "digits".
int cuQuo = cuDiff;
for (int iu = regNum._iuLast; ; iu--)
{
if (iu < cuDiff)
{
cuQuo++;
break;
}
if (regDen._rgu[iu - cuDiff] != regNum._rgu[iu])
{
if (regDen._rgu[iu - cuDiff] < regNum._rgu[iu])
cuQuo++;
break;
}
}
if (cuQuo == 0)
return;
if (fQuo)
regQuo.SetSizeLazy(cuQuo);
// Get the uint to use for the trial divisions. We normalize so the high bit is set.
uint uDen = regDen._rgu[cuDen - 1];
uint uDenNext = regDen._rgu[cuDen - 2];
int cbitShiftLeft = NumericsHelpers.CbitHighZero(uDen);
int cbitShiftRight = kcbitUint - cbitShiftLeft;
if (cbitShiftLeft > 0)
{
uDen = (uDen << cbitShiftLeft) | (uDenNext >> cbitShiftRight);
uDenNext <<= cbitShiftLeft;
if (cuDen > 2)
uDenNext |= regDen._rgu[cuDen - 3] >> cbitShiftRight;
}
Contract.Assert((uDen & 0x80000000) != 0);
// Allocate and initialize working space.
Contract.Assert(cuQuo + cuDen == regNum._iuLast + 1 || cuQuo + cuDen == regNum._iuLast + 2);
regNum.EnsureWritable();
for (int iu = cuQuo; --iu >= 0; )
{
// Get the high (normalized) bits of regNum.
uint uNumHi = iu + cuDen <= regNum._iuLast ? regNum._rgu[iu + cuDen] : 0;
Contract.Assert(uNumHi <= regDen._rgu[cuDen - 1]);
ulong uuNum = NumericsHelpers.MakeUlong(uNumHi, regNum._rgu[iu + cuDen - 1]);
uint uNumNext = regNum._rgu[iu + cuDen - 2];
if (cbitShiftLeft > 0)
{
uuNum = (uuNum << cbitShiftLeft) | (uNumNext >> cbitShiftRight);
uNumNext <<= cbitShiftLeft;
if (iu + cuDen >= 3)
uNumNext |= regNum._rgu[iu + cuDen - 3] >> cbitShiftRight;
}
// Divide to get the quotient digit.
ulong uuQuo = uuNum / uDen;
ulong uuRem = (uint)(uuNum % uDen);
Contract.Assert(uuQuo <= (ulong)uint.MaxValue + 2);
if (uuQuo > uint.MaxValue)
{
uuRem += uDen * (uuQuo - uint.MaxValue);
uuQuo = uint.MaxValue;
}
while (uuRem <= uint.MaxValue && uuQuo * uDenNext > NumericsHelpers.MakeUlong((uint)uuRem, uNumNext))
{
uuQuo--;
uuRem += uDen;
}
// Multiply and subtract. Note that uuQuo may be 1 too large. If we have a borrow
// at the end, we'll add the denominator back on and decrement uuQuo.
if (uuQuo > 0)
{
ulong uuBorrow = 0;
for (int iu2 = 0; iu2 < cuDen; iu2++)
{
uuBorrow += regDen._rgu[iu2] * uuQuo;
uint uSub = (uint)uuBorrow;
uuBorrow >>= kcbitUint;
if (regNum._rgu[iu + iu2] < uSub)
uuBorrow++;
regNum._rgu[iu + iu2] -= uSub;
}
Contract.Assert(uNumHi == uuBorrow || uNumHi == uuBorrow - 1);
if (uNumHi < uuBorrow)
{
// Add, tracking carry.
uint uCarry = 0;
for (int iu2 = 0; iu2 < cuDen; iu2++)
{
uCarry = AddCarry(ref regNum._rgu[iu + iu2], regDen._rgu[iu2], uCarry);
Contract.Assert(uCarry <= 1);
}
Contract.Assert(uCarry == 1);
uuQuo--;
}
regNum._iuLast = iu + cuDen - 1;
}
if (fQuo)
{
if (cuQuo == 1)
regQuo._uSmall = (uint)uuQuo;
else
regQuo._rgu[iu] = (uint)uuQuo;
}
}
Contract.Assert(cuDen > 1 && regNum._iuLast > 0);
regNum._iuLast = cuDen - 1;
regNum.Trim();
}
//private static readonly double kdblLn2To32 = 32 * Math.Log(2);
/*internal void ShiftRight(int cbit)
{
AssertValid(true);
if (cbit <= 0)
{
if (cbit < 0)
ShiftLeft(-cbit);
return;
}
ShiftRight(cbit / kcbitUint, cbit % kcbitUint);
}
internal void ShiftRight(int cuShift, int cbitShift)
{
Contract.Assert(cuShift >= 0);
Contract.Assert(0 <= cbitShift);
Contract.Assert(cbitShift < kcbitUint);
AssertValid(true);
if ((cuShift | cbitShift) == 0)
return;
if (cuShift > _iuLast)
{
Set(0);
return;
}
if (_iuLast == 0)
{
_uSmall >>= cbitShift;
AssertValid(true);
return;
}
uint[] rguSrc = _rgu;
int cuSrc = _iuLast + 1;
_iuLast -= cuShift;
if (_iuLast == 0)
_uSmall = rguSrc[cuShift] >> cbitShift;
else
{
Contract.Assert(_rgu.Length > _iuLast);
if (!_fWritable)
{
_rgu = new uint[_iuLast + 1];
_fWritable = true;
}
if (cbitShift > 0)
{
for (int iuSrc = cuShift + 1, iuDst = 0; iuSrc < cuSrc; iuSrc++, iuDst++)
_rgu[iuDst] = (rguSrc[iuSrc - 1] >> cbitShift) | (rguSrc[iuSrc] << (kcbitUint - cbitShift));
_rgu[_iuLast] = rguSrc[cuSrc - 1] >> cbitShift;
Trim();
}
else
Array.Copy(rguSrc, cuShift, _rgu, 0, _iuLast + 1);
}
AssertValid(true);
}*/
/*internal void ShiftLeft(int cbit)
{
AssertValid(true);
if (cbit <= 0)
{
if (cbit < 0)
ShiftRight(-cbit);
return;
}
ShiftLeft(cbit / kcbitUint, cbit % kcbitUint);
}
internal void ShiftLeft(int cuShift, int cbitShift)
{
Contract.Assert(cuShift >= 0);
Contract.Assert(0 <= cbitShift);
Contract.Assert(cbitShift < kcbitUint);
AssertValid(true);
int iuLastNew = _iuLast + cuShift;
uint uHigh = 0;
if (cbitShift > 0)
{
uHigh = High >> (kcbitUint - cbitShift);
if (uHigh != 0)
iuLastNew++;
}
if (iuLastNew == 0)
{
_uSmall <<= cbitShift;
return;
}
uint[] rguSrc = _rgu;
bool fClearLow = cuShift > 0;
if (!_fWritable || _rgu.Length <= iuLastNew)
{
_rgu = new uint[iuLastNew + 1];
_fWritable = true;
fClearLow = false;
}
if (_iuLast == 0)
{
if (uHigh != 0)
_rgu[cuShift + 1] = uHigh;
_rgu[cuShift] = _uSmall << cbitShift;
}
else if (cbitShift == 0)
Array.Copy(rguSrc, 0, _rgu, cuShift, _iuLast + 1);
else
{
int iuSrc = _iuLast;
int iuDst = _iuLast + cuShift;
if (iuDst < iuLastNew)
_rgu[iuLastNew] = uHigh;
for (; iuSrc > 0; iuSrc--, iuDst--)
_rgu[iuDst] = (rguSrc[iuSrc] << cbitShift) | (rguSrc[iuSrc - 1] >> (kcbitUint - cbitShift));
_rgu[cuShift] = rguSrc[0] << cbitShift;
}
_iuLast = iuLastNew;
if (fClearLow)
Array.Clear(_rgu, 0, cuShift);
}*/
// Get the high two uints, combined into a ulong, zero extending to
// length cu if necessary. Asserts cu > _iuLast and _iuLast > 0.
/*
private ulong GetHigh2(int cu)
{
Contract.Assert(cu >= 2);
Contract.Assert(_iuLast > 0);
Contract.Assert(cu > _iuLast);
if (cu - 1 <= _iuLast)
return NumericsHelpers.MakeUlong(_rgu[cu - 1], _rgu[cu - 2]);
if (cu - 2 == _iuLast)
return _rgu[cu - 2];
return 0;
}
*/
// Apply a single carry starting at iu, extending the register
// if needed.
/*
private void ApplyCarry(int iu)
{
Contract.Assert(0 <= iu);
Contract.Assert(_fWritable && _iuLast > 0);
Contract.Assert(iu <= _iuLast + 1);
for (; ; iu++)
{
if (iu > _iuLast)
{
if (_iuLast + 1 == _rgu.Length)
Array.Resize(ref _rgu, _iuLast + 2);
_rgu[++_iuLast] = 1;
break;
}
if (++_rgu[iu] > 0)
break;
}
}
*/
// Apply a single borrow starting at iu. This does NOT trim the result.
/*
private void ApplyBorrow(int iuMin)
{
Contract.Assert(0 < iuMin);
Contract.Assert(_fWritable && _iuLast > 0);
Contract.Assert(iuMin <= _iuLast);
for (int iu = iuMin; iu <= _iuLast; iu++)
{
uint u = _rgu[iu]--;
if (u > 0)
return;
}
// Borrowed off the end!
Contract.Assert(false, "Invalid call to ApplyBorrow");
}
*/
private static uint AddCarry(ref uint u1, uint u2, uint uCarry)
{
ulong uu = (ulong)u1 + u2 + uCarry;
u1 = (uint)uu;
return (uint)(uu >> kcbitUint);
}
/*private static uint SubBorrow(ref uint u1, uint u2, uint uBorrow)
{
ulong uu = (ulong)u1 - u2 - uBorrow;
u1 = (uint)uu;
return (uint)-(int)(uu >> kcbitUint);
}
private static uint SubRevBorrow(ref uint u1, uint u2, uint uBorrow)
{
ulong uu = (ulong)u2 - u1 - uBorrow;
u1 = (uint)uu;
return (uint)-(int)(uu >> kcbitUint);
}*/
private static uint MulCarry(ref uint u1, uint u2, uint uCarry)
{
// This is guaranteed not to overflow.
ulong uuRes = (ulong)u1 * u2 + uCarry;
u1 = (uint)uuRes;
return (uint)(uuRes >> kcbitUint);
}
private static uint AddMulCarry(ref uint uAdd, uint uMul1, uint uMul2, uint uCarry)
{
// This is guaranteed not to overflow.
ulong uuRes = (ulong)uMul1 * uMul2 + uAdd + uCarry;
uAdd = (uint)uuRes;
return (uint)(uuRes >> kcbitUint);
}
// ReSharper disable once InconsistentNaming
/*
internal static void GCD(ref BigIntegerBuilder reg1, ref BigIntegerBuilder reg2)
{
// Use Lehmer's GCD, with improvements, after eliminating common powers of 2.
if (reg1._iuLast > 0 && reg1._rgu[0] == 0 || reg2._iuLast > 0 && reg2._rgu[0] == 0)
{
int cbit1 = reg1.MakeOdd();
int cbit2 = reg2.MakeOdd();
LehmerGcd(ref reg1, ref reg2);
int cbitMin = Math.Min(cbit1, cbit2);
if (cbitMin > 0)
reg1.ShiftLeft(cbitMin);
}
else
LehmerGcd(ref reg1, ref reg2);
}
*/
// This leaves the GCD in reg1 and trash in reg2.
// This uses Lehmer's method, with test due to Jebelean / Belnkiy and Vidunas.
// See Knuth, vol 2, page 345; Jebelean (1993) "Improving the Multiprecision Euclidean Algorithm";
// and Belenkiy & Vidunas (1998) "A Greatest Common Divisor Algorithm".
/*
private static void LehmerGcd(ref BigIntegerBuilder reg1, ref BigIntegerBuilder reg2)
{
// This value has no real significance. Occ----ionally we want to subtract
// the two registers and keep the absolute value of the difference. To do
// so we need to pass a ref sign to Sub.
int signTmp = +1;
for (; ; )
{
reg1.AssertValid(true);
reg2.AssertValid(true);
int cuMax = reg1._iuLast + 1;
int cuMin = reg2._iuLast + 1;
if (cuMax < cuMin)
{
NumericsHelpers.Swap(ref reg1, ref reg2);
NumericsHelpers.Swap(ref cuMax, ref cuMin);
}
Contract.Assert(cuMax == reg1._iuLast + 1);
Contract.Assert(cuMin == reg2._iuLast + 1);
if (cuMin == 1)
{
if (cuMax == 1)
reg1._uSmall = NumericsHelpers.GCD(reg1._uSmall, reg2._uSmall);
else if (reg2._uSmall != 0)
reg1.Set(NumericsHelpers.GCD(Mod(ref reg1, reg2._uSmall), reg2._uSmall));
return;
}
if (cuMax == 2)
{
reg1.Set(NumericsHelpers.GCD(reg1.GetHigh2(2), reg2.GetHigh2(2)));
return;
}
if (cuMin <= cuMax - 2)
{
// reg1 is much larger than reg2, so just mod.
reg1.Mod(ref reg2);
continue;
}
ulong uu1 = reg1.GetHigh2(cuMax);
ulong uu2 = reg2.GetHigh2(cuMax);
Contract.Assert(uu1 != 0 && uu2 != 0);
int cbit = NumericsHelpers.CbitHighZero(uu1 | uu2);
if (cbit > 0)
{
uu1 = (uu1 << cbit) | (reg1._rgu[cuMax - 3] >> (kcbitUint - cbit));
// Note that [cuMax - 3] is correct, NOT [cuMin - 3].
uu2 = (uu2 << cbit) | (reg2._rgu[cuMax - 3] >> (kcbitUint - cbit));
}
if (uu1 < uu2)
{
NumericsHelpers.Swap(ref uu1, ref uu2);
NumericsHelpers.Swap(ref reg1, ref reg2);
}
// Make sure we don't overflow.
if (uu1 == ulong.MaxValue || uu2 == ulong.MaxValue)
{
uu1 >>= 1;
uu2 >>= 1;
}
Contract.Assert(uu1 >= uu2); // We ensured this above.
if (uu1 == uu2)
{
// The high bits are the same, so we don't know which
// is larger. No matter, just subtract one from the other
// and keep the absolute value of the result.
Contract.Assert(cuMax == cuMin);
reg1.Sub(ref signTmp, ref reg2);
Contract.Assert(reg1._iuLast < cuMin - 1);
continue;
}
if (NumericsHelpers.GetHi(uu2) == 0)
{
// reg1 is much larger than reg2, so just mod.
reg1.Mod(ref reg2);
continue;
}
// These are the coefficients to apply to reg1 and reg2 to get
// the new values, using: a * reg1 - b * reg2 and -c * reg1 + d * reg2.
uint a = 1, b = 0;
uint c = 0, d = 1;
for (; ; )
{
Contract.Assert(uu1 + a > a); // no overflow
Contract.Assert(uu2 + d > d);
Contract.Assert(uu1 > b);
Contract.Assert(uu2 > c);
Contract.Assert(uu2 + d <= uu1 - b);
uint uQuo = 1;
ulong uuNew = uu1 - uu2;
while (uuNew >= uu2 && uQuo < 32)
{
uuNew -= uu2;
uQuo++;
}
if (uuNew >= uu2)
{
ulong uuQuo = uu1 / uu2;
if (uuQuo > uint.MaxValue)
break;
uQuo = (uint)uuQuo;
uuNew = uu1 - uQuo * uu2;
}
ulong uuAdNew = a + (ulong)uQuo * c;
ulong uuBcNew = b + (ulong)uQuo * d;
if (uuAdNew > int.MaxValue || uuBcNew > int.MaxValue)
break;
// Jebelean / Belenkiy-Vidunas conditions
if (uuNew < uuBcNew || uuNew + uuAdNew > uu2 - c)
break;
Contract.Assert(uQuo == (uu1 + a - 1) / (uu2 - c));
Contract.Assert(uQuo == (uu1 - b) / (uu2 + d));
a = (uint)uuAdNew;
b = (uint)uuBcNew;
uu1 = uuNew;
if (uu1 <= b)
{
Contract.Assert(uu1 == b);
break;
}
Contract.Assert(uu1 + a > a); // no overflow
Contract.Assert(uu2 + d > d);
Contract.Assert(uu2 > c);
Contract.Assert(uu1 > b);
Contract.Assert(uu1 + a <= uu2 - c);
uQuo = 1;
uuNew = uu2 - uu1;
while (uuNew >= uu1 && uQuo < 32)
{
uuNew -= uu1;
uQuo++;
}
if (uuNew >= uu1)
{
ulong uuQuo = uu2 / uu1;
if (uuQuo > uint.MaxValue)
break;
uQuo = (uint)uuQuo;
uuNew = uu2 - uQuo * uu1;
}
uuAdNew = d + (ulong)uQuo * b;
uuBcNew = c + (ulong)uQuo * a;
if (uuAdNew > int.MaxValue || uuBcNew > int.MaxValue)
break;
// Jebelean / Belenkiy-Vidunas conditions
if (uuNew < uuBcNew || uuNew + uuAdNew > uu1 - b)
break;
Contract.Assert(uQuo == (uu2 + d - 1) / (uu1 - b));
Contract.Assert(uQuo == (uu2 - c) / (uu1 + a));
d = (uint)uuAdNew;
c = (uint)uuBcNew;
uu2 = uuNew;
if (uu2 <= c)
{
Contract.Assert(uu2 == c);
break;
}
}
if (b == 0)
{
Contract.Assert(a == 1 && c == 0 && d == 1);
Contract.Assert(uu1 > uu2); // We ensured this above.
if (uu1 / 2 >= uu2)
reg1.Mod(ref reg2);
else
reg1.Sub(ref signTmp, ref reg2);
}
else
{
// Replace reg1 with a * reg1 - b * reg2.
// Replace reg2 with -c * reg1 + d * reg2.
// Do everything mod cuMin uint's.
reg1.SetSizeKeep(cuMin, 0);
reg2.SetSizeKeep(cuMin, 0);
int nCarry1 = 0;
int nCarry2 = 0;
for (int iu = 0; iu < cuMin; iu++)
{
uint u1 = reg1._rgu[iu];
uint u2 = reg2._rgu[iu];
long nn1 = (long)u1 * a - (long)u2 * b + nCarry1;
long nn2 = (long)u2 * d - (long)u1 * c + nCarry2;
nCarry1 = (int)(nn1 >> kcbitUint);
nCarry2 = (int)(nn2 >> kcbitUint);
reg1._rgu[iu] = (uint)nn1;
reg2._rgu[iu] = (uint)nn2;
}
reg1.Trim();
reg2.Trim();
}
}
}
*/
/*internal int CbitLowZero()
{
AssertValid(true);
if (_iuLast == 0)
{
if ((_uSmall & 1) != 0 || _uSmall == 0)
return 0;
return NumericsHelpers.CbitLowZero(_uSmall);
}
int iuMin = 0;
while (_rgu[iuMin] == 0)
iuMin++;
int cbit = NumericsHelpers.CbitLowZero(_rgu[iuMin]);
return cbit + iuMin * kcbitUint;
}*/
// Shift right until the number is odd. Return the number of bits
// shifted. Asserts that the register is trimmed.
/*
internal int MakeOdd()
{
AssertValid(true);
int cbit = CbitLowZero();
if (cbit > 0)
ShiftRight(cbit);
return cbit;
}
*/
}
}