/* ----------------------------------------------------------------------------- * decode.c * * Copyright (c) 2005, 2006, Vivek Mohan * All rights reserved. See LICENSE * ----------------------------------------------------------------------------- */ #include "types.h" #include "itab.h" #include "input.h" #include "decode.h" /* The max number of prefixes to an instruction */ #define MAX_PREFIXES 15 static const struct ud_itab_entry ie_invalid = { UD_Iinvalid, O_NONE, O_NONE, O_NONE, P_none }; static const struct ud_itab_entry ie_pause = { UD_Ipause, O_NONE, O_NONE, O_NONE, P_none }; static const struct ud_itab_entry ie_nop = { UD_Inop, O_NONE, O_NONE, O_NONE, P_none }; /* Extracts instruction prefixes. */ static int get_prefixes( struct ud* u ) { unsigned int have_pfx = 1; unsigned int i; uint8_t curr; /* if in error state, bail out */ if ( u->error ) return -1; /* keep going as long as there are prefixes available */ for ( i = 0; have_pfx ; ++i ) { /* Get next byte. */ inp_next(u); if ( u->error ) return -1; curr = inp_curr( u ); /* rex prefixes in 64bit mode */ if ( u->dis_mode == 64 && ( curr & 0xF0 ) == 0x40 ) { u->pfx_rex = curr; } else { switch ( curr ) { case 0x2E : u->pfx_seg = UD_R_CS; u->pfx_rex = 0; break; case 0x36 : u->pfx_seg = UD_R_SS; u->pfx_rex = 0; break; case 0x3E : u->pfx_seg = UD_R_DS; u->pfx_rex = 0; break; case 0x26 : u->pfx_seg = UD_R_ES; u->pfx_rex = 0; break; case 0x64 : u->pfx_seg = UD_R_FS; u->pfx_rex = 0; break; case 0x65 : u->pfx_seg = UD_R_GS; u->pfx_rex = 0; break; case 0x67 : /* adress-size override prefix */ u->pfx_adr = 0x67; u->pfx_rex = 0; break; case 0xF0 : u->pfx_lock = 0xF0; u->pfx_rex = 0; break; case 0x66: /* the 0x66 sse prefix is only effective if no other sse prefix * has already been specified. */ if ( !u->pfx_insn ) u->pfx_insn = 0x66; u->pfx_opr = 0x66; u->pfx_rex = 0; break; case 0xF2: u->pfx_insn = 0xF2; u->pfx_repne = 0xF2; u->pfx_rep = 0; u->pfx_repe = 0; u->pfx_rex = 0; break; case 0xF3: u->pfx_insn = 0xF3; u->pfx_rep = 0xF3; u->pfx_repe = 0xF3; u->pfx_repne = 0; u->pfx_rex = 0; break; default : /* No more prefixes */ have_pfx = 0; break; } } /* check if we reached max instruction length */ if ( i + 1 == MAX_INSN_LENGTH ) { u->error = 1; break; } } /* return status */ if ( u->error ) return -1; /* rewind back one byte in stream, since the above loop * stops with a non-prefix byte. */ inp_back(u); /* speculatively determine the effective operand mode, * based on the prefixes and the current disassembly * mode. This may be inaccurate, but useful for mode * dependent decoding. */ if ( u->dis_mode == 64 ) { u->opr_mode = REX_W( u->pfx_rex ) ? 64 : ( ( u->pfx_opr ) ? 16 : 32 ) ; u->adr_mode = ( u->pfx_adr ) ? 32 : 64; } else if ( u->dis_mode == 32 ) { u->opr_mode = ( u->pfx_opr ) ? 16 : 32; u->adr_mode = ( u->pfx_adr ) ? 16 : 32; } else if ( u->dis_mode == 16 ) { u->opr_mode = ( u->pfx_opr ) ? 32 : 16; u->adr_mode = ( u->pfx_adr ) ? 32 : 16; } return 0; } /* Searches the instruction tables for the right entry. */ static int search_itab( struct ud * u ) { const struct ud_itab_entry * e = NULL; enum ud_itab_index table; uint8_t peek; uint8_t did_peek = 0; uint8_t curr; uint8_t index; /* if in state of error, return */ if ( u->error ) return -1; /* get first byte of opcode. */ inp_next(u); if ( u->error ) return -1; curr = inp_curr(u); /* resolve xchg, nop, pause crazyness */ if ( 0x90 == curr ) { if ( !( u->dis_mode == 64 && REX_B( u->pfx_rex ) ) ) { if ( u->pfx_rep ) { u->pfx_rep = 0; e = & ie_pause; } else { e = & ie_nop; } goto found_entry; } } /* get top-level table */ if ( 0x0F == curr ) { table = ITAB__0F; curr = inp_next(u); if ( u->error ) return -1; /* 2byte opcodes can be modified by 0x66, F3, and F2 prefixes */ if ( 0x66 == u->pfx_insn ) { /* ssse3 & sse4 opcodes have form 66 0f [38 3a] */ if ((curr == 0x38) || (curr == 0x3A)) { table = (curr == 0x38) ? ITAB__PFX_SSE66__SSE38 : ITAB__PFX_SSE66__SSE3A; curr = inp_next(u); if ( u->error ) return -1; u->pfx_opr = 0; } else if ( ud_itab_list[ ITAB__PFX_SSE66__0F ][ curr ].mnemonic != UD_Inone ) { table = ITAB__PFX_SSE66__0F; u->pfx_opr = 0; } } else if ( 0xF2 == u->pfx_insn ) { if (curr == 0x38) { table = ITAB__PFX_SSEF2__SSE38; curr = inp_next(u); if ( u->error ) return -1; u->pfx_repne = 0; } else if (ud_itab_list[ITAB__PFX_SSEF2__0F][curr].mnemonic != UD_Inone) { table = ITAB__PFX_SSEF2__0F; u->pfx_repne = 0; } } else if ( 0xF3 == u->pfx_insn ) { if ( ud_itab_list[ ITAB__PFX_SSEF3__0F ][ curr ].mnemonic != UD_Inone ) { table = ITAB__PFX_SSEF3__0F; u->pfx_repe = 0; u->pfx_rep = 0; } } else if ((curr == 0x38) || (curr == 0x3A)) { /* 0f [38 3a] form for SSSE3 mostly */ table = (curr == 0x38) ? ITAB__PFX_SSE38 : ITAB__PFX_SSE3A; curr = inp_next(u); if ( u->error ) return -1; } /* pick an instruction from the 1byte table */ } else { table = ITAB__1BYTE; } index = curr; search: e = & ud_itab_list[ table ][ index ]; /* if mnemonic constant is a standard instruction constant * our search is over. */ if ( e->mnemonic < UD_Id3vil ) { if ( e->mnemonic == UD_Iinvalid ) { if ( did_peek ) { inp_next( u ); if ( u->error ) return -1; } goto found_entry; } goto found_entry; } table = e->prefix; switch ( e->mnemonic ) { case UD_Igrp_reg: peek = inp_peek( u ); did_peek = 1; index = MODRM_REG( peek ); break; case UD_Igrp_mod: peek = inp_peek( u ); did_peek = 1; index = MODRM_MOD( peek ); if ( index == 3 ) index = ITAB__MOD_INDX__11; else index = ITAB__MOD_INDX__NOT_11; break; case UD_Igrp_rm: curr = inp_next( u ); did_peek = 0; if ( u->error ) return -1; index = MODRM_RM( curr ); break; case UD_Igrp_x87: curr = inp_next( u ); did_peek = 0; if ( u->error ) return -1; index = curr - 0xC0; break; case UD_Igrp_osize: if ( u->opr_mode == 64 ) index = ITAB__MODE_INDX__64; else if ( u->opr_mode == 32 ) index = ITAB__MODE_INDX__32; else index = ITAB__MODE_INDX__16; break; case UD_Igrp_asize: if ( u->adr_mode == 64 ) index = ITAB__MODE_INDX__64; else if ( u->adr_mode == 32 ) index = ITAB__MODE_INDX__32; else index = ITAB__MODE_INDX__16; break; case UD_Igrp_mode: if ( u->dis_mode == 64 ) index = ITAB__MODE_INDX__64; else if ( u->dis_mode == 32 ) index = ITAB__MODE_INDX__32; else index = ITAB__MODE_INDX__16; break; case UD_Igrp_vendor: if ( u->vendor == UD_VENDOR_INTEL ) index = ITAB__VENDOR_INDX__INTEL; else if ( u->vendor == UD_VENDOR_AMD ) index = ITAB__VENDOR_INDX__AMD; #ifndef __BUILDMACHINE__ else assert( !"unrecognized vendor id" ); #endif /* !__BUILDMACHINE__ */ break; case UD_Id3vil: #ifndef __BUILDMACHINE__ assert( !"invalid instruction mnemonic constant Id3vil" ); #endif /* !__BUILDMACHINE__ */ break; default: #ifndef __BUILDMACHINE__ assert( !"invalid instruction mnemonic constant" ); #endif /* !__BUILDMACHINE__ */ break; } goto search; found_entry: u->itab_entry = e; u->mnemonic = u->itab_entry->mnemonic; return 0; } static uint8_t resolve_operand_size( const struct ud * u, uint8_t s ) { switch ( s ) { case SZ_V: return ( u->opr_mode ); case SZ_Z: return ( u->opr_mode == 16 ) ? 16 : 32; case SZ_P: return ( u->opr_mode == 16 ) ? SZ_WP : SZ_DP; case SZ_MDQ: return ( u->opr_mode == 16 ) ? 32 : u->opr_mode; case SZ_RDQ: return ( u->dis_mode == 64 ) ? 64 : 32; default: return s; } } static int resolve_mnemonic( struct ud* u ) { /* far/near flags */ u->br_far = 0; u->br_near = 0; /* readjust operand sizes for call/jmp instrcutions */ if ( u->mnemonic == UD_Icall || u->mnemonic == UD_Ijmp ) { /* WP: 16bit pointer */ if ( u->operand[ 0 ].size == SZ_WP ) { u->operand[ 0 ].size = 16; u->br_far = 1; u->br_near= 0; /* DP: 32bit pointer */ } else if ( u->operand[ 0 ].size == SZ_DP ) { u->operand[ 0 ].size = 32; u->br_far = 1; u->br_near= 0; } else { u->br_far = 0; u->br_near= 1; } /* resolve 3dnow weirdness. */ } else if ( u->mnemonic == UD_I3dnow ) { uint8_t curr = inp_next(u); if ( u->error ) return -1; u->mnemonic = ud_itab_list[ ITAB__3DNOW ][ inp_curr( u ) ].mnemonic; } /* SWAPGS is only valid in 64bits mode */ if ( u->mnemonic == UD_Iswapgs && u->dis_mode != 64 ) { u->error = 1; return -1; } return 0; } /* ----------------------------------------------------------------------------- * decode_a()- Decodes operands of the type seg:offset * ----------------------------------------------------------------------------- */ static void decode_a(struct ud* u, struct ud_operand *op) { if (u->opr_mode == 16) { /* seg16:off16 */ op->type = UD_OP_PTR; op->size = 32; op->lval.ptr.off = inp_uint16(u); op->lval.ptr.seg = inp_uint16(u); } else { /* seg16:off32 */ op->type = UD_OP_PTR; op->size = 48; op->lval.ptr.off = inp_uint32(u); op->lval.ptr.seg = inp_uint16(u); } } /* ----------------------------------------------------------------------------- * decode_gpr() - Returns decoded General Purpose Register * ----------------------------------------------------------------------------- */ static enum ud_type decode_gpr(register struct ud* u, uint8_t s, unsigned char rm) { s = resolve_operand_size(u, s); switch (s) { case 64: return UD_R_RAX + rm; case SZ_DP: case 32: return UD_R_EAX + rm; case SZ_WP: case 16: return UD_R_AX + rm; case 8: if (u->dis_mode == 64 && u->pfx_rex) { if (rm >= 4) return UD_R_SPL + (rm-4); return UD_R_AL + rm; } else return UD_R_AL + rm; default: return 0; } } /* ----------------------------------------------------------------------------- * resolve_gpr64() - 64bit General Purpose Register-Selection. * ----------------------------------------------------------------------------- */ static enum ud_type resolve_gpr64(struct ud* u, enum ud_operand_code gpr_op) { if (gpr_op >= OP_rAXr8 && gpr_op <= OP_rDIr15) gpr_op = (gpr_op - OP_rAXr8) | (REX_B(u->pfx_rex) << 3); else gpr_op = (gpr_op - OP_rAX); if (u->opr_mode == 16) return gpr_op + UD_R_AX; if (u->dis_mode == 32 || (u->opr_mode == 32 && ! (REX_W(u->pfx_rex) || u->default64))) { return gpr_op + UD_R_EAX; } return gpr_op + UD_R_RAX; } /* ----------------------------------------------------------------------------- * resolve_gpr32 () - 32bit General Purpose Register-Selection. * ----------------------------------------------------------------------------- */ static enum ud_type resolve_gpr32(struct ud* u, enum ud_operand_code gpr_op) { gpr_op = gpr_op - OP_eAX; if (u->opr_mode == 16) return gpr_op + UD_R_AX; return gpr_op + UD_R_EAX; } /* ----------------------------------------------------------------------------- * resolve_reg() - Resolves the register type * ----------------------------------------------------------------------------- */ static enum ud_type resolve_reg(struct ud* u, unsigned int type, unsigned char i) { switch (type) { case T_MMX : return UD_R_MM0 + (i & 7); case T_XMM : return UD_R_XMM0 + i; case T_CRG : return UD_R_CR0 + i; case T_DBG : return UD_R_DR0 + i; case T_SEG : if ((i & 7) >= 6) u->error = 1; return UD_R_ES + (i & 7); case T_NONE: default: return UD_NONE; } } /* ----------------------------------------------------------------------------- * decode_imm() - Decodes Immediate values. * ----------------------------------------------------------------------------- */ static void decode_imm(struct ud* u, uint8_t s, struct ud_operand *op) { op->size = resolve_operand_size(u, s); op->type = UD_OP_IMM; switch (op->size) { case 8: op->lval.sbyte = inp_uint8(u); break; case 16: op->lval.uword = inp_uint16(u); break; case 32: op->lval.udword = inp_uint32(u); break; case 64: op->lval.uqword = inp_uint64(u); break; default: return; } } /* ----------------------------------------------------------------------------- * decode_modrm() - Decodes ModRM Byte * ----------------------------------------------------------------------------- */ static void decode_modrm(struct ud* u, struct ud_operand *op, uint8_t s, unsigned char rm_type, struct ud_operand *opreg, unsigned char reg_size, unsigned char reg_type) { unsigned char mod, rm, reg; inp_next(u); /* get mod, r/m and reg fields */ mod = MODRM_MOD(inp_curr(u)); rm = (REX_B(u->pfx_rex) << 3) | MODRM_RM(inp_curr(u)); reg = (REX_R(u->pfx_rex) << 3) | MODRM_REG(inp_curr(u)); op->size = resolve_operand_size(u, s); /* if mod is 11b, then the UD_R_m specifies a gpr/mmx/sse/control/debug */ if (mod == 3) { op->type = UD_OP_REG; if (rm_type == T_GPR) op->base = decode_gpr(u, op->size, rm); else op->base = resolve_reg(u, rm_type, (REX_B(u->pfx_rex) << 3) | (rm&7)); } /* else its memory addressing */ else { /* no memory addressing with CR or DR registers */ if (reg_type == T_CRG || rm_type == T_CRG || reg_type == T_DBG || rm_type == T_DBG) { u->error = 1; return; } op->type = UD_OP_MEM; /* 64bit addressing */ if (u->adr_mode == 64) { op->base = UD_R_RAX + rm; /* get offset type */ if (mod == 1) op->offset = 8; else if (mod == 2) op->offset = 32; else if (mod == 0 && (rm & 7) == 5) { op->base = UD_R_RIP; op->offset = 32; } else op->offset = 0; /* Scale-Index-Base (SIB) */ if ((rm & 7) == 4) { inp_next(u); op->scale = (1 << SIB_S(inp_curr(u))) & ~1; op->index = UD_R_RAX + (SIB_I(inp_curr(u)) | (REX_X(u->pfx_rex) << 3)); op->base = UD_R_RAX + (SIB_B(inp_curr(u)) | (REX_B(u->pfx_rex) << 3)); /* special conditions for base reference */ if (op->index == UD_R_RSP) { op->index = UD_NONE; op->scale = UD_NONE; } if (op->base == UD_R_RBP || op->base == UD_R_R13) { if (mod == 0) op->base = UD_NONE; if (mod == 1) op->offset = 8; else op->offset = 32; } } } /* 32-Bit addressing mode */ else if (u->adr_mode == 32) { /* get base */ op->base = UD_R_EAX + rm; /* get offset type */ if (mod == 1) op->offset = 8; else if (mod == 2) op->offset = 32; else if (mod == 0 && rm == 5) { op->base = UD_NONE; op->offset = 32; } else op->offset = 0; /* Scale-Index-Base (SIB) */ if ((rm & 7) == 4) { inp_next(u); op->scale = (1 << SIB_S(inp_curr(u))) & ~1; op->index = UD_R_EAX + (SIB_I(inp_curr(u)) | (REX_X(u->pfx_rex) << 3)); op->base = UD_R_EAX + (SIB_B(inp_curr(u)) | (REX_B(u->pfx_rex) << 3)); if (op->index == UD_R_ESP) { op->index = UD_NONE; op->scale = UD_NONE; } /* special condition for base reference */ if (op->base == UD_R_EBP) { if (mod == 0) op->base = UD_NONE; if (mod == 1) op->offset = 8; else op->offset = 32; } } } /* 16bit addressing mode */ else { switch (rm) { case 0: op->base = UD_R_BX; op->index = UD_R_SI; break; case 1: op->base = UD_R_BX; op->index = UD_R_DI; break; case 2: op->base = UD_R_BP; op->index = UD_R_SI; break; case 3: op->base = UD_R_BP; op->index = UD_R_DI; break; case 4: op->base = UD_R_SI; break; case 5: op->base = UD_R_DI; break; case 6: op->base = UD_R_BP; break; case 7: op->base = UD_R_BX; break; } if (mod == 0 && rm == 6) { op->offset= 16; op->base = UD_NONE; } else if (mod == 1) op->offset = 8; else if (mod == 2) op->offset = 16; } } /* extract offset, if any */ switch(op->offset) { case 8 : op->lval.ubyte = inp_uint8(u); break; case 16: op->lval.uword = inp_uint16(u); break; case 32: op->lval.udword = inp_uint32(u); break; case 64: op->lval.uqword = inp_uint64(u); break; default: break; } /* resolve register encoded in reg field */ if (opreg) { opreg->type = UD_OP_REG; opreg->size = resolve_operand_size(u, reg_size); if (reg_type == T_GPR) opreg->base = decode_gpr(u, opreg->size, reg); else opreg->base = resolve_reg(u, reg_type, reg); } } /* ----------------------------------------------------------------------------- * decode_o() - Decodes offset * ----------------------------------------------------------------------------- */ static void decode_o(struct ud* u, uint8_t s, struct ud_operand *op) { switch (u->adr_mode) { case 64: op->offset = 64; op->lval.uqword = inp_uint64(u); break; case 32: op->offset = 32; op->lval.udword = inp_uint32(u); break; case 16: op->offset = 16; op->lval.uword = inp_uint16(u); break; default: return; } op->type = UD_OP_MEM; op->size = resolve_operand_size(u, s); } /* ----------------------------------------------------------------------------- * disasm_operands() - Disassembles Operands. * ----------------------------------------------------------------------------- */ static int disasm_operands(register struct ud* u) { /* mopXt = map entry, operand X, type; */ enum ud_operand_code mop1t = u->itab_entry->operand1.type; enum ud_operand_code mop2t = u->itab_entry->operand2.type; enum ud_operand_code mop3t = u->itab_entry->operand3.type; /* mopXs = map entry, operand X, size */ uint8_t mop1s = u->itab_entry->operand1.size; uint8_t mop2s = u->itab_entry->operand2.size; uint8_t mop3s = u->itab_entry->operand3.size; /* iop = instruction operand */ register struct ud_operand* iop = u->operand; switch(mop1t) { case OP_A : decode_a(u, &(iop[0])); break; /* M[b] ... */ case OP_M : if (MODRM_MOD(inp_peek(u)) == 3) u->error= 1; /* E, G/P/V/I/CL/1/S */ case OP_E : if (mop2t == OP_G) { decode_modrm(u, &(iop[0]), mop1s, T_GPR, &(iop[1]), mop2s, T_GPR); if (mop3t == OP_I) decode_imm(u, mop3s, &(iop[2])); else if (mop3t == OP_CL) { iop[2].type = UD_OP_REG; iop[2].base = UD_R_CL; iop[2].size = 8; } } else if (mop2t == OP_P) decode_modrm(u, &(iop[0]), mop1s, T_GPR, &(iop[1]), mop2s, T_MMX); else if (mop2t == OP_V) decode_modrm(u, &(iop[0]), mop1s, T_GPR, &(iop[1]), mop2s, T_XMM); else if (mop2t == OP_S) decode_modrm(u, &(iop[0]), mop1s, T_GPR, &(iop[1]), mop2s, T_SEG); else { decode_modrm(u, &(iop[0]), mop1s, T_GPR, NULL, 0, T_NONE); if (mop2t == OP_CL) { iop[1].type = UD_OP_REG; iop[1].base = UD_R_CL; iop[1].size = 8; } else if (mop2t == OP_I1) { iop[1].type = UD_OP_CONST; u->operand[1].lval.udword = 1; } else if (mop2t == OP_I) { decode_imm(u, mop2s, &(iop[1])); } } break; /* G, E/PR[,I]/VR */ case OP_G : if (mop2t == OP_M) { if (MODRM_MOD(inp_peek(u)) == 3) u->error= 1; decode_modrm(u, &(iop[1]), mop2s, T_GPR, &(iop[0]), mop1s, T_GPR); } else if (mop2t == OP_E) { decode_modrm(u, &(iop[1]), mop2s, T_GPR, &(iop[0]), mop1s, T_GPR); if (mop3t == OP_I) decode_imm(u, mop3s, &(iop[2])); } else if (mop2t == OP_PR) { decode_modrm(u, &(iop[1]), mop2s, T_MMX, &(iop[0]), mop1s, T_GPR); if (iop[1].type == UD_OP_MEM) { u->error = 1; return -1; } if (mop3t == OP_I) decode_imm(u, mop3s, &(iop[2])); } else if (mop2t == OP_VR) { if (MODRM_MOD(inp_peek(u)) != 3) u->error = 1; decode_modrm(u, &(iop[1]), mop2s, T_XMM, &(iop[0]), mop1s, T_GPR); } else if (mop2t == OP_W) decode_modrm(u, &(iop[1]), mop2s, T_XMM, &(iop[0]), mop1s, T_GPR); break; /* AL..BH, I/O/DX */ case OP_AL : case OP_CL : case OP_DL : case OP_BL : case OP_AH : case OP_CH : case OP_DH : case OP_BH : iop[0].type = UD_OP_REG; iop[0].base = UD_R_AL + (mop1t - OP_AL); iop[0].size = 8; if (mop2t == OP_I) decode_imm(u, mop2s, &(iop[1])); else if (mop2t == OP_DX) { iop[1].type = UD_OP_REG; iop[1].base = UD_R_DX; iop[1].size = 16; } else if (mop2t == OP_O) decode_o(u, mop2s, &(iop[1])); break; /* rAX[r8]..rDI[r15], I/rAX..rDI/O */ case OP_rAXr8 : case OP_rCXr9 : case OP_rDXr10 : case OP_rBXr11 : case OP_rSPr12: case OP_rBPr13: case OP_rSIr14 : case OP_rDIr15 : case OP_rAX : case OP_rCX : case OP_rDX : case OP_rBX : case OP_rSP : case OP_rBP : case OP_rSI : case OP_rDI : iop[0].type = UD_OP_REG; iop[0].base = resolve_gpr64(u, mop1t); if (mop2t == OP_I) decode_imm(u, mop2s, &(iop[1])); else if (mop2t >= OP_rAX && mop2t <= OP_rDI) { iop[1].type = UD_OP_REG; iop[1].base = resolve_gpr64(u, mop2t); } else if (mop2t == OP_O) { decode_o(u, mop2s, &(iop[1])); iop[0].size = resolve_operand_size(u, mop2s); } break; /* AL[r8b]..BH[r15b], I */ case OP_ALr8b : case OP_CLr9b : case OP_DLr10b : case OP_BLr11b : case OP_AHr12b: case OP_CHr13b: case OP_DHr14b : case OP_BHr15b : { ud_type_t gpr = (mop1t - OP_ALr8b) + UD_R_AL + (REX_B(u->pfx_rex) << 3); if (UD_R_AH <= gpr && u->pfx_rex) gpr = gpr + 4; iop[0].type = UD_OP_REG; iop[0].base = gpr; if (mop2t == OP_I) decode_imm(u, mop2s, &(iop[1])); break; } /* eAX..eDX, DX/I */ case OP_eAX : case OP_eCX : case OP_eDX : case OP_eBX : case OP_eSP : case OP_eBP : case OP_eSI : case OP_eDI : iop[0].type = UD_OP_REG; iop[0].base = resolve_gpr32(u, mop1t); if (mop2t == OP_DX) { iop[1].type = UD_OP_REG; iop[1].base = UD_R_DX; iop[1].size = 16; } else if (mop2t == OP_I) decode_imm(u, mop2s, &(iop[1])); break; /* ES..GS */ case OP_ES : case OP_CS : case OP_DS : case OP_SS : case OP_FS : case OP_GS : /* in 64bits mode, only fs and gs are allowed */ if (u->dis_mode == 64) if (mop1t != OP_FS && mop1t != OP_GS) u->error= 1; iop[0].type = UD_OP_REG; iop[0].base = (mop1t - OP_ES) + UD_R_ES; iop[0].size = 16; break; /* J */ case OP_J : decode_imm(u, mop1s, &(iop[0])); iop[0].type = UD_OP_JIMM; break ; /* PR, I */ case OP_PR: if (MODRM_MOD(inp_peek(u)) != 3) u->error = 1; decode_modrm(u, &(iop[0]), mop1s, T_MMX, NULL, 0, T_NONE); if (mop2t == OP_I) decode_imm(u, mop2s, &(iop[1])); break; /* VR, I */ case OP_VR: if (MODRM_MOD(inp_peek(u)) != 3) u->error = 1; decode_modrm(u, &(iop[0]), mop1s, T_XMM, NULL, 0, T_NONE); if (mop2t == OP_I) decode_imm(u, mop2s, &(iop[1])); break; /* P, Q[,I]/W/E[,I],VR */ case OP_P : if (mop2t == OP_Q) { decode_modrm(u, &(iop[1]), mop2s, T_MMX, &(iop[0]), mop1s, T_MMX); if (mop3t == OP_I) decode_imm(u, mop3s, &(iop[2])); } else if (mop2t == OP_W) { decode_modrm(u, &(iop[1]), mop2s, T_XMM, &(iop[0]), mop1s, T_MMX); } else if (mop2t == OP_VR) { if (MODRM_MOD(inp_peek(u)) != 3) u->error = 1; decode_modrm(u, &(iop[1]), mop2s, T_XMM, &(iop[0]), mop1s, T_MMX); } else if (mop2t == OP_E) { decode_modrm(u, &(iop[1]), mop2s, T_GPR, &(iop[0]), mop1s, T_MMX); if (mop3t == OP_I) decode_imm(u, mop3s, &(iop[2])); } else if (mop2t == OP_PR) { decode_modrm(u, &(iop[1]), mop2s, T_MMX, &(iop[0]), mop1s, T_MMX); if (iop[1].type == UD_OP_MEM) { u->error = 1; return -1; } if (mop3t == OP_I) decode_imm(u, mop3s, &(iop[2])); } break; /* R, C/D */ case OP_R : if (mop2t == OP_C) decode_modrm(u, &(iop[0]), mop1s, T_GPR, &(iop[1]), mop2s, T_CRG); else if (mop2t == OP_D) decode_modrm(u, &(iop[0]), mop1s, T_GPR, &(iop[1]), mop2s, T_DBG); break; /* C, R */ case OP_C : decode_modrm(u, &(iop[1]), mop2s, T_GPR, &(iop[0]), mop1s, T_CRG); break; /* D, R */ case OP_D : decode_modrm(u, &(iop[1]), mop2s, T_GPR, &(iop[0]), mop1s, T_DBG); break; /* Q, P */ case OP_Q : decode_modrm(u, &(iop[0]), mop1s, T_MMX, &(iop[1]), mop2s, T_MMX); break; /* S, E */ case OP_S : decode_modrm(u, &(iop[1]), mop2s, T_GPR, &(iop[0]), mop1s, T_SEG); break; /* W, V */ case OP_W : decode_modrm(u, &(iop[0]), mop1s, T_XMM, &(iop[1]), mop2s, T_XMM); break; /* V, W[,I]/Q/M/E */ case OP_V : if (mop2t == OP_W) { /* special cases for movlps and movhps */ if (MODRM_MOD(inp_peek(u)) == 3) { if (u->mnemonic == UD_Imovlps) u->mnemonic = UD_Imovhlps; else if (u->mnemonic == UD_Imovhps) u->mnemonic = UD_Imovlhps; } decode_modrm(u, &(iop[1]), mop2s, T_XMM, &(iop[0]), mop1s, T_XMM); if (mop3t == OP_I) decode_imm(u, mop3s, &(iop[2])); } else if (mop2t == OP_Q) decode_modrm(u, &(iop[1]), mop2s, T_MMX, &(iop[0]), mop1s, T_XMM); else if (mop2t == OP_M) { if (MODRM_MOD(inp_peek(u)) == 3) u->error= 1; decode_modrm(u, &(iop[1]), mop2s, T_GPR, &(iop[0]), mop1s, T_XMM); } else if (mop2t == OP_E) { decode_modrm(u, &(iop[1]), mop2s, T_GPR, &(iop[0]), mop1s, T_XMM); if (mop3t == OP_I) decode_imm(u, mop3s, &(iop[2])); } else if (mop2t == OP_PR) { decode_modrm(u, &(iop[1]), mop2s, T_MMX, &(iop[0]), mop1s, T_XMM); if (iop[1].type == UD_OP_MEM) { u->error = 1; return -1; } } else if (mop2t == OP_VR) { if (MODRM_MOD(inp_peek(u)) != 3) u->error = 1; decode_modrm(u, &(iop[1]), mop2s, T_XMM, &(iop[0]), mop1s, T_XMM); } break; /* DX, eAX/AL */ case OP_DX : iop[0].type = UD_OP_REG; iop[0].base = UD_R_DX; iop[0].size = 16; if (mop2t == OP_eAX) { iop[1].type = UD_OP_REG; iop[1].base = resolve_gpr32(u, mop2t); } else if (mop2t == OP_AL) { iop[1].type = UD_OP_REG; iop[1].base = UD_R_AL; iop[1].size = 8; } break; /* I, I/AL/eAX */ case OP_I : decode_imm(u, mop1s, &(iop[0])); if (mop2t == OP_I) decode_imm(u, mop2s, &(iop[1])); else if (mop2t == OP_AL) { iop[1].type = UD_OP_REG; iop[1].base = UD_R_AL; iop[1].size = 16; } else if (mop2t == OP_eAX) { iop[1].type = UD_OP_REG; iop[1].base = resolve_gpr32(u, mop2t); } break; /* O, AL/eAX */ case OP_O : decode_o(u, mop1s, &(iop[0])); iop[1].type = UD_OP_REG; iop[1].size = resolve_operand_size(u, mop1s); if (mop2t == OP_AL) iop[1].base = UD_R_AL; else if (mop2t == OP_eAX) iop[1].base = resolve_gpr32(u, mop2t); else if (mop2t == OP_rAX) iop[1].base = resolve_gpr64(u, mop2t); break; /* 3 */ case OP_I3 : iop[0].type = UD_OP_CONST; iop[0].lval.sbyte = 3; break; /* ST(n), ST(n) */ case OP_ST0 : case OP_ST1 : case OP_ST2 : case OP_ST3 : case OP_ST4 : case OP_ST5 : case OP_ST6 : case OP_ST7 : iop[0].type = UD_OP_REG; iop[0].base = (mop1t-OP_ST0) + UD_R_ST0; iop[0].size = 0; if (mop2t >= OP_ST0 && mop2t <= OP_ST7) { iop[1].type = UD_OP_REG; iop[1].base = (mop2t-OP_ST0) + UD_R_ST0; iop[1].size = 0; } break; /* AX */ case OP_AX: iop[0].type = UD_OP_REG; iop[0].base = UD_R_AX; iop[0].size = 16; break; /* none */ default : iop[0].type = iop[1].type = iop[2].type = UD_NONE; } return 0; } /* ----------------------------------------------------------------------------- * clear_insn() - clear instruction pointer * ----------------------------------------------------------------------------- */ static int clear_insn(register struct ud* u) { u->error = 0; u->pfx_seg = 0; u->pfx_opr = 0; u->pfx_adr = 0; u->pfx_lock = 0; u->pfx_repne = 0; u->pfx_rep = 0; u->pfx_repe = 0; u->pfx_seg = 0; u->pfx_rex = 0; u->pfx_insn = 0; u->mnemonic = UD_Inone; u->itab_entry = NULL; memset( &u->operand[ 0 ], 0, sizeof( struct ud_operand ) ); memset( &u->operand[ 1 ], 0, sizeof( struct ud_operand ) ); memset( &u->operand[ 2 ], 0, sizeof( struct ud_operand ) ); return 0; } static int do_mode( struct ud* u ) { /* if in error state, bail out */ if ( u->error ) return -1; /* propagate perfix effects */ if ( u->dis_mode == 64 ) { /* set 64bit-mode flags */ /* Check validity of instruction m64 */ if ( P_INV64( u->itab_entry->prefix ) ) { u->error = 1; return -1; } /* effective rex prefix is the effective mask for the * instruction hard-coded in the opcode map. */ u->pfx_rex = ( u->pfx_rex & 0x40 ) | ( u->pfx_rex & REX_PFX_MASK( u->itab_entry->prefix ) ); /* whether this instruction has a default operand size of * 64bit, also hardcoded into the opcode map. */ u->default64 = P_DEF64( u->itab_entry->prefix ); /* calculate effective operand size */ if ( REX_W( u->pfx_rex ) ) { u->opr_mode = 64; } else if ( u->pfx_opr ) { u->opr_mode = 16; } else { /* unless the default opr size of instruction is 64, * the effective operand size in the absence of rex.w * prefix is 32. */ u->opr_mode = ( u->default64 ) ? 64 : 32; } /* calculate effective address size */ u->adr_mode = (u->pfx_adr) ? 32 : 64; } else if ( u->dis_mode == 32 ) { /* set 32bit-mode flags */ u->opr_mode = ( u->pfx_opr ) ? 16 : 32; u->adr_mode = ( u->pfx_adr ) ? 16 : 32; } else if ( u->dis_mode == 16 ) { /* set 16bit-mode flags */ u->opr_mode = ( u->pfx_opr ) ? 32 : 16; u->adr_mode = ( u->pfx_adr ) ? 32 : 16; } /* These flags determine which operand to apply the operand size * cast to. */ u->c1 = ( P_C1( u->itab_entry->prefix ) ) ? 1 : 0; u->c2 = ( P_C2( u->itab_entry->prefix ) ) ? 1 : 0; u->c3 = ( P_C3( u->itab_entry->prefix ) ) ? 1 : 0; /* set flags for implicit addressing */ u->implicit_addr = P_IMPADDR( u->itab_entry->prefix ); return 0; } #ifndef __BUILDMACHINE__ static int gen_hex( struct ud *u ) { unsigned int i; unsigned char *src_ptr = inp_sess( u ); char* src_hex; /* bail out if in error stat. */ if ( u->error ) return -1; /* output buffer pointe */ src_hex = ( char* ) u->insn_hexcode; /* for each byte used to decode instruction */ for ( i = 0; i < u->inp_ctr; ++i, ++src_ptr) { sprintf( src_hex, "%02x", *src_ptr & 0xFF ); src_hex += 2; } return 0; } #endif /* !__BUILDMACHINE__ */ /* ============================================================================= * ud_decode() - Instruction decoder. Returns the number of bytes decoded. * ============================================================================= */ unsigned int ud_decode( struct ud* u ) { inp_start(u); if ( clear_insn( u ) ) { ; /* error */ } else if ( get_prefixes( u ) != 0 ) { ; /* error */ } else if ( search_itab( u ) != 0 ) { ; /* error */ } else if ( do_mode( u ) != 0 ) { ; /* error */ } else if ( disasm_operands( u ) != 0 ) { ; /* error */ } else if ( resolve_mnemonic( u ) != 0 ) { ; /* error */ } /* Handle decode error. */ if ( u->error ) { /* clear out the decode data. */ clear_insn( u ); /* mark the sequence of bytes as invalid. */ u->itab_entry = & ie_invalid; u->mnemonic = u->itab_entry->mnemonic; } u->insn_offset = u->pc; /* set offset of instruction */ u->insn_fill = 0; /* set translation buffer index to 0 */ u->pc += u->inp_ctr; /* move program counter by bytes decoded */ #ifndef __BUILDMACHINE__ gen_hex( u ); /* generate hex code */ #endif /* !__BUILDMACHINE__ */ /* return number of bytes disassembled. */ return u->inp_ctr; } /* vim:cindent * vim:ts=4 * vim:sw=4 * vim:expandtab */